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Abstract

Large language models (LLMs) are a new and powerful tool for a wide span of applications involving natural language and demon-
strate impressive code generation abilities. In this paper, we explore the capabilitity of state-of-the-art LLMs, including closed-
source options like OpenAI’s GPT-4 and open-source alternatives like Meta AI’s Codellama, to automatically generate tests and use
these tests to validate and verify compiler implementations of a directive-based programming paradigm, OpenACC. Our approach
entails exploring various prompt engineering techniques including a code template, retrieval-augmented generation (RAG) with
code template, expressive prompt using RAG with code template, one-shot example, and RAG with one-shot example. This paper
focusses on (a) exploring the capabilities of the latest LLMs for code generation, (b) investigating prompt and fine tuning methods,
and (c) analyzing the outcome of LLMs generated tests.
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1. Introduction

Large language models (LLMs) are capable of understand-
ing natural language as input and performing tasks with that un-
derstanding. LLMs are capable of an array of tasks, from text
generation to sentiment classification, code generation, docu-
ment summarization, and more. OpenAI’s GPT-4 scored 90th
percentile on the Uniform Bar Exam, 99th percentile on the ver-
bal GRE [1], among several other impressive scores on presti-
gious academic exams. Similarly, Antropic’s Claude 2 achieved
a 76.5% score on the multiple choice section of the Bar exam,
and over 90th percentile on GRE reading and writing exams
[2]. These models are pre-trained on large, unlabeled datasets
with self-supervised learning and can be fine-tuned with domain-
specific datasets for improved performance on specific tasks
Code-specific LLMs are trained on a large corpus of open-source
code, such as stack overflow and GitHub, enabling the model
to write functional and complex code, such as shown in Github
Copilot and Codeium [3, 4].

With the vast capabilities of LLMs, the work presented in
this paper explores the applicability of the most suitable LLMs
and prompt engineering techniques for an optimal generation
of a validation and verification testsuite for high-performance
computing (HPC) compilers from a standard specification which
is mainly natural language. More specifically, the goal of this
approach is to check for correctness of C/C++/Fortran com-
piler implementations of directive-based programming models,
OpenMP [5] and OpenACC [6]. To the best of our knowledge,
this paper is the first of its kind. While this paper particularly
focuses on the directive-based programming model, OpenACC,
the approach can be adapted to the OpenMP model as well (this
project is also work in progress). The performance of LLMs in
programming tasks such as interview-style questions has been
explored over the past couple of years [7]. However, the appli-

cation of the approach to the validation of compilers based on a
standard specification has not been explored yet.

Briefly, OpenACC, is a directive-based programming model,
which targets x86 architectures, A64FX and accelerators such
as GPUs. A specification defines OpenACC [6]. Open-source
compilers such as GCC [8], LLVM/Clacc [9], and vendors such
as HPE Cray (for Fortran), and NVIDIA interpret the specifica-
tion to develop suitable compilers. GCC, Clacc, and HPE Cray
compilers target X86, NVIDIA and AMD accelerator architec-
tures, while NVIDIA compilers target X86, NVIDIA GPUs and
A64FX architectures. OpenACC offers varying levels of con-
trol over the execution of a program and the flow of data to
users. The model allows the compiler to make optimization
decisions or allows for customized distribution of data and ex-
ecution. This paradigm is beneficial for domain scientists who
do not want to re-implement potentially complex domain appli-
cations in a low-level parallel programming language such as
CUDA [10], OpenCL [11], SYCL [12]. OpenACC is a widely
popular programming model spanning several domains includ-
ing climate [13, 14, 15], computational fluid dynamics [16],
nuclear physics [17], biophysics [18] among several other do-
mains.

1.1. Motivation
With the popularity of the programming model, it is crit-

ical that the compiler implementations compiles and executes
the code correctly. Why is this a challenge? Different compiler
developers tend to interpret the specification differently often
leading to misinterpretations and ambiguities. The complexity
of the definition of the features is one of the several reasons.
Therefore the compiler implementations are prone to issues or
in other words inaccuracy. The other obvious issues include
compilation failures or execution failures that need to be iden-
tified and addressed. Also each compiler implementation offers
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varying levels of support for OpenACC and the coverage of the
specification by a compiler varies too, for example HPE/Cray
supports only Fortran. Nevertheless, the user should not be bur-
dened with the above challenges nor should they be expected
to tailor the usage of the implementations for their applications.
So, the expectation is that the implementations should be the
same at the level of abstraction for the user.

These above challenges directly call for the need to validate
the compiler implementations. This can be done so by writing
functional, corner, regression and stress tests. This can be an
involved and recurrent task. We have been developing a vali-
dation and verification (V&V) testsuite [19] for OpenACC just
like we have been developing a testsuite for OpenMP [20].

The task of designing those tests can be quite challenging
and cumbersome, and still may not always be correct or com-
plete. There are many ways that the features of the base lan-
guage, such as C, C++, or Fortran, and the parallel program-
ming paradigm, such as OpenACC or OpenMP, can be used
together, and it is humanely impossible to cover them all. Tests
in both the OpenACC and OpenMP testsuites are manually cre-
ated, requiring the teams to stay up-to-date with the tests’ gen-
eration and maintenance. The team members evolve during the
project period. There is a lag when team members leave the
project and new members are trained to create quality tests.
The lag can range from three weeks to three months or more
at times. This can harm the project as we lose continuity and
are behind on deliverable. The above hardships serve as a moti-
vation for this work that explores the possibility of using LLMs
for a V&V testsuite that can help with complementing the ef-
forts to write these tests manually.

Developers can ”shift” focus to designing complicated cor-
ner case tests and stress test compiler implementations. LLMs
require oversight but can be handy if the effort is front-loaded.
LLMs can also help adapt an existing test to new or updated fea-
tures and perform well at translation between languages. There
are many things that LLMs offer developers, though they must
be used with human oversight and caution.

This paper makes the following contributions:

• Provides LLM-generated tests to check for correctness of
OpenACC compiler implementations

• Explores a fine-tuning dataset for this task

• Evaluates performance of LLMs, choice of prompt engi-
neering techniques, and task-specific fine-tuning on test
generation for OpenACC

This paper’s generated testsuites, prompts, fine-tuning dataset,
and specification json are available at our GitHub [21].

2. Overview of LLMs

Large language models are based on the transformer archi-
tecture introduced in [22]. These models are trained on a large
corpus of data, generally gathered from the internet. LLMs are
trained in two stages: pre-training, and fine-tuning. Pre-training
uses a large and general data set, while fine-tuning requires a

1 User: Write a code in C to verify compiler

implementation of the OpenACC specification

of the acc delete routine.

2 Assistant:

3 ...

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <openacc.h>

7

8 int main() {

9 const int N = 1000;

10 float *a = (float *) malloc(N*sizeof(float));

11 float *b = (float *) malloc(N*sizeof(float));

12

13 // Initialize the arrays

14 for (int i = 0; i < N; i++) {

15 a[i] = i * 1.0f;

16 b[i] = 0.0f;

17 }

18

19 #pragma acc data copy(a[0:N])

20 {

21 // Update ’a’ array on the device

22 #pragma acc parallel loop

23 for (int i = 0; i < N; i++) {

24 a[i] = a[i] + 1.0f;

25 }

26

27 // Delete the ’a’ array from the device

28 #pragma acc exit data delete(a[0:N])

29

30 // Attempt to update ’a’ array on the

device again

31 #pragma acc parallel loop

32 for (int i = 0; i < N; i++) {

33 a[i] = a[i] + 1.0f;

34 }

35 }

36

37 // Check the result on the host

38 for (int i = 0; i < N; i++) {

39 if(a[i] != i + 1.0f) {

40 printf("Validation failed at index %

d! Host: %f\n", i, a[i]);

41 free(a);

42 free(b);

43 return EXIT_FAILURE;

44 }

45 }

46 printf("Validation passed !\n");

47

48 free(a);

49 free(b);

50

51 return EXIT_SUCCESS;

52 }

Figure 1: Example prompt and generated test, with no augmentation through
context retrieval, one-shot example, or a code template. This test is a false pass,
because it doesn’t test the acc routine directive, but the exit data directive.

task-specific data set. Both stages involve optimizing the LLMs
parameters by predicting the next word, or token, in the train-
ing data set, and updating the parameters, or the weights and
biases of the architecture, according to the difference between
the actual and predicted next token.

Powerful LLMs consist of a large number of parameters, on
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Model / Benchmark HumanEval
pass@1

MBPP

Codelama-34B-Instruct 41.5 57.0
Phind-Codellama-34b-v2 73.8 -
GPT-3.5 (few-shot) 48.1 52.2
GPT-4 (few-shot) 67.0 -

Table 1: Selected LLMs performance on code generation benchmarks

the order of billions. Closed-source LLMs such as OpenAI’s
GPT-4 [1] and Anthropic’s Claude [23], are available through a
web service or an API, but the parameters are not published.
Open-source LLMs such as Meta AI’s family of Codellama
models [24] and Stanford’s Alpaca [25], are publicly available
for local use, meaning the parameters are published and avail-
able for download. Some organizations choose to provide an
infrastructure for using the LLM locally, such as for Codel-
lama [24] while many are available on the Huggingface Hub,
a community-driven platform with over 120k models [26].

The input to an LLM is text, which must first be tokenized
or split into chunks of around four characters [27]. The in-
put text is referred to as a prompt. Once tokenized, the input
consists of a set of tokens, from which the LLM creates em-
beddings, which represent the meaning of the tokens in a high-
dimensional vector space. Next, the input embeddings are aug-
mented with positional encodings, because the ordering is not
captured in the data otherwise. The LLM uses the whole set
of embeddings in the decoding process to produce output. The
basic function of a language model is next token prediction -
given a set of input data, a prediction for the next most proba-
ble token is made. This process is referred to as causal language
modeling, but it is not the only task LLMs are capable of. They
also excel in various specialized tasks, such as sentiment clas-
sification (e.g., rating how positive or negative a statement is),
question answering, summarization, and code generation [28].

2.1. Prompt Engineering Techniques

To achieve high-quality performance on complex tasks, spe-
cialized input, or prompts, are often required. The most sim-
ple prompt is one simply requesting the desired behavior, e.g.
”Write a code in C to validate compiler implementation of Ope-
nACC parallel construct.” would be a simple prompt. An exam-
ple of the output from this type of prompt is shown in Figure 1.
The example test here passes, but it does not target the correct
feature, the acc delete routine in this case, so it is a false pass.

The amount of detail in the prompt regarding the task itself
is an important factor in creating an effective prompt. The LLM
does not have any prior information about the task, so unless
specifically instructed to act a certain way, there is no reason
to expect certain behaviour. In this work, we compare the ef-
fectiveness of a simple, one-sentence prompt, versus a prompt
using multiple sentences describing in detail the task and the
requirements. We call the detailed prompt in this work an ”ex-
pressive prompt”.

LLMs are capable of learning to complete a new task based
on a few examples provided in the prompt, known as few shot

prompting [29]. For example, if the task is translation, the
prompt could include a few example translations before request-
ing translation of another sentence. This technique can be lim-
ited to a single example, known as one-shot prompting. If the
task is code generation for interview-style programming ques-
tions, a good solution to an example question would be pro-
vided as a one-shot example. Alternatively, providing no ex-
ample of the desired behavior in the prompt is called zero-shot
prompting. Few or one-shot prompting can teach the LLM the
desired behavior from the prompt, rather than from specific
training. This enables a single, general model to be applied
to various specialized tasks without additional training for each
task. Even a single example can provide the model with infor-
mation on how to perform the task properly.

Retrieval-augmented generation (RAG) is a common tech-
nique to engineer effective prompts by including relevant con-
text to the task, retrieved with a search algorithm, in the prompt
[30]. Typically, this is implemented by splitting a text database
into chunks, creating embeddings from the chunks that rep-
resent the meaning, and storing the embeddings in a vector
database. Then, the vector database can be searched for sim-
ilar information to the prompt, and the retrieved data can be
wrapped into the prompt with a template. For example, in
a domain-specific question answering task, Wikipedia pages
from the domain can be converted into a vector database, and
queried for relevant information to each question, to be included
in the prompt as context.

Other strategies exist to improve LLM output through prompt
engineering, such as chain-of-thought prompting, in which the
LLM is instructed to plan its solution to the task, before com-
pleting the task [31]. This method can enable the LLM to
tackle more complex tasks by planning them out before per-
forming them. A more advanced approach involves creating
a parametrized prompt that can be optimized to produce the
desired output through training, known as prompt tuning [32].
Prompt engineering is new and broad area, so the optimal meth-
ods are still being learned and there are no gold standards that
indicate which prompt would be an idea choice for a given case
study.

For our work, we explore expressive prompting, one-shot
prompting, and RAG. We choose to evaluate these methods for
a few reasons. First, they have not previously been evaluated on
this task. Next, all three methods are used in order to improve
the quality of test generation in different ways. The goal of us-
ing expressive prompts in this research is to evaluate the effect
of the length of the task description in the prompt on the qual-
ity of output. Creating a validation test for OpenACC features
is not a simple task, so an expressive prompt seems necessary.
We evaluate one-shot prompting as a method that attempts to
teach the LLM the proper style of testing OpenACC features,
without additional fine-tuning. Finally, we use RAG in this re-
search because its crucial that the LLM is aware of the latest
OpenACC specification to create accurate tests, so it must be
included either through training or RAG.
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2.2. Fine-tuning of LLMs

Prompt engineering is a powerful method to adapt a model
to specific tasks without requiring expensive retraining. While
prompts are useful, they do not alter the underlying parame-
ters of the language model, thus constraining their ability to
specialize or improve performance. Fine-tuning is training a
foundation model on a domain-specific dataset, which involves
updating all of the model’s parameters. This method can teach
a LLM to solve a new task without examples in the prompt [33].
Fine-tuning can also be more robust than prompt design, as the
model can be shown more examples than can fit in the prompt.
Additionally, updating the LLMs parameters during fine-tuning
adapts the model to a specific task, while relying on a prompt
leaves the LLMs architecture unchanged. The maximum input
size to a LLM, sometimes called the context window, is lim-
ited, while the training datasets can be enormous. LLMs can’t
see all of the fine-tuning data during inference, they can only
operate based on their parameters and input. Using prompts of-
fer the advantage of making all the data directly available to the
language model. Though fine-tuning can be costly, parameter-
efficient methods can reduce costs, such as freezing the model
weights during fine-tuning and introducing small trainable lay-
ers into the architecture [34, 35].

LLMs are trained on a large corpus of data from the inter-
net, but that does not necessarily include a lot of information
about the subject of our interest, i.e., OpenACC. In order for
the LLMs to correctly use and validate OpenACC implemen-
tations, they need to learn the features of OpenACC and their
definitions. This can be achieved through context within the
prompt or through fine-tuning on an OpenACC-specific dataset.

2.3. LLM Benchmarks

Performance of LLMs is evaluated on a variety of bench-
marks, often task-specific, such as shown in Table 1. This ta-
ble focuses on results from the selected LLMs that we have
used for our research. There is currently no ‘gold standard’
benchmark suite code generation task, let alone compiler test
generation from natural language specification. We choose to
consider HumanEval and MBPP benchmarks in the selection
of LLMs [36, 37]. HumanEval is an evaluation set released by
OpenAI to evaluate functional correctness of Python code gen-
eration from docstrings. The HumanEval benchmark is relevant
to this work as it evaluates code generation performance from
natural language specification at varying levels of complexity.
Although the benchmark’s scope does not directly cover test
generation quality and feature coverage, it is relevant to the
evaluation of code generation from natural language prompts.
MBPP is similar to HumanEval, designed to evaluate the per-
formance of LLMs on python programming tasks suitable for
entry-level programmers.

The research in this paper focuses on code generation in C,
C++, and Fortran, so the above benchmarks discussed provide a
baseline for measuring model performance on the general code
generation task from natural language prompts.

3. Related Work

We will start off this section by sharing our own on-going
and relevant OpenACC V&V testsuite project [19] where we
have been manually generating functional tests. This work stands
as a good point of reference for the development of LLM work
discussed in the rest of the paper. Quite similar to the Ope-
nACC V&V is our other on-going project on OpenMP offload-
ing V&V [20] which also serves the similar purpose of manu-
ally generating functional tests. While this current work focuses
on OpenACC V&V, work is in progress to adapt lessons learnt
for OpenMP V&V as well.

We next summarize some of the relevant and most recent
work in this area of research. Many models have been devel-
oped for code generation. Meta released a family of Codel-
lama LLMs, OpenAI released Codex and GPT-4, among oth-
ers, Github created Copilot [3], Amazon created Codewhis-
per [38], BigCode created StarCoder [39], Microsoft created
WizardCoder [40], to name some. Fine-tuned code generation
models from foundation models are also prevalent in the open-
source community, such as Phind’s fine-tuned models.

Some related works have tried other approaches to improve
LLM performance for high-performance computing tasks. In
LM4HPC [41], Chen et. al. create a HPC-specific tokenizer,
designed to more accurately split the code into tokens corre-
sponding to the typical syntax of HPC code. Moreovoer, LM4HPC
presents multiple HPC-specific training datasets. These are use-
ful both in constructing large pretraining datasets or for domain-
specific fine-tuning. LM4HPC also develops three pipelines,
code similarity analysis, parallelism detection, and OpenMP
question answering, and creates leaderboards from evaluation
of performance on these tasks.

Kadosh et al. [42] present Tokompiler, also a tokenizer de-
signed for HPC tasks. Godoy et al. [43] evaluates LLM perfor-
mance on generation of HPC numerical kernels using GitHub
Copilot powered by OpenAi’s Codex. Building upon this work,
the authors in [44] evaluate the performance of Llama2 and
GPT-3 LLMs for HPC kernels generation. The authors in [45]
explore fine-tuning LLMs with HPC-specific data and testing
on downstream tasks such as code completion, OpenMP label-
ing, and performance prediction.

At Microsoft, LLMs are used to create CodeT [46], a method
that involves first generation of test cases for code solutions to
programming tasks, then execution of the code samples using
the generated tests, and evaluation of output. Tufano et al.[47]
at Microsoft present AthenaTest, an approach using the BART
transformer to generate unit tests. Shafer et al. [48] present a
approach, TestPilot, that enables the LLM to attempt to fix fail-
ing tests .

LLMs are being gradually adopted for HPC problems. While
the literature review refers to test generations using LLMs, they
are not necessarily compiler validation tests, but provide a sim-
ilar workflow. Our research stands apart from these projects in
that it evaluates the performance of LLMs on a) comprehend-
ing a lengthy natural language programming paradigm specifi-
cation, and b) subsequently generating validation tests for com-
piler implementations. This paper, to the best of our knowledge,
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is the first in this direction.

4. Methods

This section provides a detailed description of how we used
LLMs, prompt engineering techniques and datasets to automat-
ically generate and evaluate tests for OpenACC. Our choices
were grounded in recent benchmarks and related work.

1 f’’’Write a code in {language} to verify

compiler implementation of the OpenACC

specification of {feature }.

2

3 Make sure to follow the template of the format

provided. Include the provided header file ,

and any other necessary libraries.

4 Write simple code to test {feature} in {language

}. Try to isolate that feature while still

using it correctly.

5 This code is part of a testsuite that will be

ran , so write complete code , don’t leave it

unfinished.

6 The goal is to return 0 if the target feature , {

feature}, is working properly , and not zero

otherwise.

7 The context below is from the most recent

OpenACC specification , make sure to refer to

it to produce up to date code.

8

9 Context: {context}

10

11 Template: {template}

12 ’’’

Figure 2: Expressive prompt with RAG and Template. This prompt includes
detailed instructions on the task, and provides context from the OpenACC spec-
ification and a code template below.

4.1. Selection and initial expectations from LLMs

In this subsection, we somewhat set the stage on what to ex-
pect out of the LLMs that we would use for our work so that we
can eventually decipher how close or far we were from our ex-
pectations. Based on the benchmarks described in Section 2.3
and performance tabularized in Table 1, we selected the follow-
ing LLMs for this research: OpenAI’s GPT-3.5-Turbo and GPT-
4, Meta AI’s Codellama-34b-Instruct, and Phind’s fine-tuned
Codellama-34b-Instruct v2 [29, 1, 24, 49]. There are no verified
sources for OpenAI that we found that provides information on
the size of GPT-4, in other words, the number of parameters.
The largest version of GPT-3 is 175B parameters, much larger
than Codellama-34B. As GPT-4 is GPT-3’s successor, GPT-4
is presumably larger than any other model and scores high on
a variety of benchmarks, so we initially expect the best per-
formance from this model. However, Phind-Codellama-34b-v2
scores highest on the HumanEval benchmark as shown in Ta-
ble 1. Additionally, Codellama models were trained specifically
for code generation, while GPT-4 is general purpose, so we ex-
pect Codellama-34b-Instruct and Phind-Codellama-34b-v2 to
be competitive.

4.2. Prompt creation

To create V&V tests for validation of OpenACC compilers
using LLMs, we create sets of prompts requesting a test for each
feature of OpenACC as listed in Chapters 2 and 3 of OpenACC
specification’s table of contents [6]. Please refer to Section 2.1
for an overview of prompt engineering techniques. To explore
the effectiveness of an expressive prompt, retrieval-augmented
generation (RAG) and one-shot prompting methods, we create
multiple sets of prompts both incorporating and excluding these
methods. For all tests without one-shot examples, we choose to
provide a code template in the prompt, to instruct the LLMs to
produce standardized output for testing and evaluation. Thus,
we create the 5 following sets of prompt methods and in the
upcoming subsections, we narrate them in detail:

• code template

• RAG with code template

• expressive prompt using RAG with code template

• one-shot example

• RAG with one-shot example

4.3. Retrieval-Augmented Generation (RAG)

To provide relevant context from the OpenACC specifica-
tion in each prompt, we implement RAG using two methods:
a similarity search algorithm, and manual retrieval of context
with a JSON of the specification. Providing the most recent
OpenACC specification to the LLMs is essential to testsuite
generation because we do not know that the LLMs are pre-
trained on the latest version of the specification, if any. More-
over, if pre-trained on the latest specification, the LLMs can
only access information from the specification through the pa-
rameters of the model which are optimized during training. The
training data is not perfectly stored in the parameters, leading
to LLMs producing false facts, known as hallucinations [50].

To enable accurate factual recall, RAG methods are imple-
mented to provide the LLMs with direct access to relevant facts
during inference. In this work, we provide relevant pieces of
the specification in the prompt to the LLMs to evaluate the ef-
fectiveness of RAG for improving LLMs ability to recall the
specification accurately, rather than improperly use OpenACC
in the generated test.

To manually retrieve context, we first construct a JSON
of the specification with the table of contents as the keys and
the corresponding sections as values. This is available in our
GitHub [21]. For each prompt, we include the corresponding
section in the prompt using the JSON. We believe that the JSON
would also be valuable to the OpenACC community for projects
like this.

To perform similarity search retrieval, we create a vector
store containing the specification text. First, we split the text
into chunks of 1000 characters, with an overlap of 100 char-
acters - this would give some continuity between chunks. We
then create embeddings of the chunks that represent their mean-
ing [51]. Next, we perform a vector store similarity search for
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1 {"prompt": "<prompt text >", "completion": "<ideal generated test >"}

2 {"prompt": "<prompt text >", "completion": "<ideal generated test >"}

Figure 3: Basic fine-tuning format, a prompt-completion pair dataset

LLMs Tests generated Time Taken GPUs used Model Parameter

GPT-3.5-Turbo fine-tuned 351 ∼4 hours Unknown 174B
GPT-4 351 ∼4 hours Unknown Unknown
Meta’s Codellama-34B-Instruct 351 ∼5 hours 4 V100s 34B
Phind-Codellama-34B-v2 351 ∼5 hours 4 V100s 34B

Table 2: Stage 2 details, including the number of tests generated, inference time, hardware, and model parameters

each prompt to retrieve relevant information from the specifica-
tion to the prompt. The retrieved information is then wrapped
into the prompt, shown in Figure 2. The necessity of context
retrieval arises because the context window of most LLMs is
shorter than the length of the entire specification. The whole
specification can not fit into the prompt, otherwise an alterna-
tive approach would be to include the entire specification in the
prompt for each test.

Some LLMs offer a context window that would fit the en-
tire specification, but by providing only relevant information
reduces the amount of data it must filter. For example, Meta
AI trains all Codellama models with a context window of up to
100k tokens, which is longer than the specification. This means
we are able to fit the entire text into the prompt instead of per-
forming RAG. We did so with Codellama-34b-Instruct using
Meta AI’s published inference code [52] which only supports
parallelization of four GPUs. We observed an out-of-memory
issue. Had Meta supported more than four GPUs, we would
have overcome this challenge. We are not aware if Meta plans
to support more than four GPUs in the near future. We also tried
Codellama using Huggingface transformers API [26], which
supports parallelism with more than four GPUs, however we
observed incorrect output so we tabled it for near-future work.

4.4. One-shot vs Zero-shot Prompting
We compare the performances of zero-shot prompting vs.

one-shot prompting by creating two set of prompts, one for
each. To construct zero-shot prompts, we do not provide any
example of validating OpenACC compiler implementation, how-
ever we choose to include a code template to help standardize
the generated tests across testsuites. For the one-shot prompts,
we provide within each prompt an example prompt and a cor-
rect manually written OpenACC V&V test from the OpenACC
V&V testsuite [19]. We run both sets of prompts with all se-
lected LLMs. Additionally, we evaluate the performance of
one-shot prompting with RAG.

4.5. Expressive Prompt
Besides training, the prompt is the only thing that a LLM

has to use to produce the desired output. The prompt is highly
influential on the output of the LLM. Even the number of words,
choice of words (often termed as word-choice) impacts the qual-
ity of the output. In our work we compare the output from

a simple prompt with one sentence, versus a detailed prompt
with various requirements listed for the task. To this end, we
compare the output between the methods that create the most
passing tests without an expressive prompt, to the same meth-
ods using an expressive prompt, shown in Figure 2. Improved
output with expressive prompt using RAG with code template is
shown in Figure 4 (in contrast with a simple prompt and output,
shown in Figure 1).

4.6. Dataset and Fine-tuning

We highlight the steps taken to construct a fine-tuning dataset
using our manually created OpenACC V&V testsuite and per-
form fine-tuning of LLMs to improve quality of validation test
generation for OpenACC. Each manually written test focuses
on one feature, so we create a prompt for each test. Each prompt
in the fine-tuning datasets requests a validation test for Ope-
nACC implementations of the feature being tested. The format
of LLM fine-tuning datasets is typically a set of prompts and
desired responses, as shown in Figure 3.

We create two datasets, a small one comprising of 50 C,
C++, and Fortran test examples and a larger dataset comprising
of 1335 examples. One-shot examples and templates are not in-
cluded in the fine-tuning dataset because the goal of fine-tuning
is to teach the LLM the desired behaviour without providing
instruction in the prompt.

Throughout fine-tuning development, we evaluate the LLM
output to ensure that it is tailored to OpenACC and produc-
ing relevant code. The foundation models we select for fine-
tuning in this research are GPT-3.5-Turbo and Codellama-34b-
Instruct. GPT-4 is not available for fine-tuning at this time. We
fine-tune both GPT-3.5-Turbo and Codellama-34b-Instruct for
10 epochs. For Codellama-34b-Instruct we encountered out of
memory issues and subsequently performed parameter efficient
fine-tuning. We report results for GPT-3.5-Turbo in Section 5
however not for Codellama-34b-Instruct as it did not produce
coherent code after parameter efficient fine-tuning.

4.7. Errors

Before we talk about the process of development, let us cat-
egorize the different types of errors. There is a possibility of
three types of errors:
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• A parsing error occurs when the generated output is in-
complete, and no end to the code block is signified. This
occurs when the LLM gets stuck in a infinite loop of
generation, instead of generating an end to the test. The
script we use to parse the output looks for an end to the
code, through back-ticks or a return statement - a parsing
error occurs when neither appears.

• A test is labeled compile error if it does not successfully
compile

• A test is labeled runtime error if it fails during execution
or returns nonzero,

• A test is labeled pass if it returns 0.

1 #include "acc_testsuite.h"

2

3 #ifndef T1

4 /* T1: acc delete , V:2.0 -2.7 */

5 int test1() {

6 int err = 0;

7 int* h_data;

8 size_t bytes = sizeof(int);

9

10 h_data = (int*) malloc(bytes);

11 *h_data = 15;

12

13 /* Place data on device */

14 acc_copyin ((void*)h_data , bytes);

15

16 /* Delete data from device */

17 acc_delete ((void*)h_data , bytes);

18

19 /* Data should now not be present in the

device */

20 if (acc_is_present ((void*)h_data , bytes)) {

21 err = 1;

22 }

23

24 free(h_data);

25

26 return err;

27 }

28 #endif

29

30 int main() {

31 int failcode = 0;

32 int failed;

33

34 #ifndef T1

35 failed = 0;

36 for (int x = 0; x < NUM_TEST_CALLS; ++x) {

37 failed = failed + test1();

38 }

39 if (failed != 0) {

40 failcode = failcode + (1 << 0);

41 }

42 #endif

43

44 return failcode;

45 }

Figure 4: Generated test with expressive prompt using RAG with code template.
This is a passing test, targeting the correct directive, and using the desired for-
mat for the testsuite infrastructure and is generated based on context from the
specification.

The prompts and fine-tuning methods we implement are de-
signed to generate tests that return a value of 0 if the feature is
working correctly and a non-zero value otherwise. The output
of LLMs is typically stochastic, so it cannot be guaranteed that
the tests that are generated indeed return 0 only if the feature is
working correctly. It may be the case that the LLM writes a test
that returns 0 regardless, so the tests require further evaluation.

4.8. Stages

Here we further explain the development process. We have
broken down the process into three stages for easier comprehen-
sion. We further explain what entails in each of these stages.

Stage 1: First, we use each selected LLM and all 5 methods
described in Section 4.2 to generate 95 tests. These are only
written in C. These tests cover every OpenACC features listed
in chapters 2 and 3 of the specification. We record the results
of these generated tests against one OpenACC compiler.

We do not create permutations of tests in this stage, such as
creating a test for each clause for each compute construct, i.e.
parallel, serial, and kernels. The script we use to compile and
run the generated tests labels each test as either parsing error,
compile error, run-time fail, pass (definitions can be found in
the previous section) We define these categories as the potential
outcomes of Stage 1 evaluation.

While we do not collect statistics on the analysis of the tests
at this stage, we manually assess the generated tests and con-
sider the results of the runtime scripts in selecting the best ap-
proach for Stage 2 which entails further refining our develop-
ment process.

Stage 2: Based on what we observe in Stage 1, we drop the
following methods: code template, RAG with code template,
one-shot example, RAG with one-shot example, retaining the
expressive prompt using RAG with code template in this stage.
For each LLM, we generate 351 tests for every OpenACC fea-
ture in C, C++, and Fortran listed in Chapter 2 and 3 of the
specification. Additionally, we generate permutations of the
compute construct clause tests for each compute construct, i.e.
parallel, serial, and kernels, to increase coverage of the specifi-
cation. Again we record the results of running each generated
test against an OpenACC compiler, and select the LLM with
the largest number of passing tests for manual analysis in Stage
3. Table 2 lists the full set up for this stage.

Stage 3: Here, we analyze the output of the LLM and method
that produced the most passing tests. Through this analysis,
we aim to determine where the LLMs and methods fall short
in generating correct tests and consider how the quality of test
output may be improved. To this end, we manually analyze a
representative subset of both passing and failing tests to deter-
mine whether the OpenACC implementations are correct. We
present the analysis in Section 5.7.

These three stages have been enlightening in a way as the
have provided tremendous insights for determining how we can
improve the overall development process. We discuss this fur-
ther in the Section 6.
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Figure 5: Stage 1 results displaying runtime results for all selected LLMs and methods. We see that Phind-Codellama-34B-v2 and GPT-4 produce the most passing
results, using expressive prompt, RAG, and a template.

5. Results

In this section, we summarize the results from our evalua-
tion of LLMs and their capabilities in OpenACC test genera-
tion.

5.1. LLMs
To ensure a consistent programming environment to evalu-

ate the performance of selected LLMs and methods, we utilize
Anaconda to create a virtual environment and install necessary
packages [53]. To locally host open-source LLMs, we use the
Llama library for Codellama-34b-Instruct with published infer-
ence code [52] and Huggingface transformers [26] for Phind-
Codellama-v2 [49]. We use Langchain [54] for text-splitting
as a preprocessing step for input into the vector database. We
use scikit-learn vector store [55] with Huggingface embeddings
through Langchain to create the vector database. For GPT-3.5-
Turbo and GPT-4 we use the OpenAI API for all inference and
fine-tuning [56]. For fine-tuning open-source models, we use a
Transfer Reinforcement Learning supervised fine-tuning mod-
ule [34]. To evaluate the generated tests, we create a python
script to compile and run tests using NVIDIA-HPC-SDK 23.5,
and record the results [57].

5.2. Experimental Setup
All inference and fine-tuning for Codellama-34b-Instruct

and Phind-Codellama-34b-v2 were performed using the Na-
tional Energy Research Scientific Computing Center’s (NERSC)
Perlmutter [58], an HPE Cray EX supercomputer equipped with

AMD EPYC CPUs and NVIDIA A100 GPUs and an NSF-
sponsored HPC Cluster in UDEL, Darwin [59] equipped with
AMD EPYC and Intel Platinum CPU nodes and NVIDIA V100
GPUs and one AMD MI100 GPU.

5.3. Codellama-34b-Instruct
We first generate a testsuite in C using Codellama-34b-Instruct

using the prompt methods listed in Section 4.2 We run each
generated testsuite against an OpenACC compiler using a script
to capture the number of compile errors, runtime errors, and
passing tests. These results are displayed in Figure 5.

Coddellama-34b-Instruct produced the least number of com-
pile errors using the expressive prompt using RAG with a code
template. This is not necessarily indicative of best performance,
as the goal of the compiler validation testsuite is not to achieve
no errors, but rather to detect existing errors in implementa-
tions. Thus, errors are expected to be acceptable outcomes of
the testsuite.

In Stage 2, as described in Section 4.8, using the expres-
sive prompt with RAG and template, we generate a testsuite in
C, C++, and FORTRAN. As indicated earlier in the same sec-
tion that there are 351 tests that could be generated out of the
two chapters of the specification, 43/351 produce passing re-
sults by checking for return code ”zero”. The bulk of the errors
are compile errors.

5.4. Phind-Codellama-34b-v2
From Stage 1 results, we find that Phind-Codellama-34b-v2

produced almost double the number of passing tests using RAG
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with a code template than RAG with a one-shot example. Ad-
ditionally, we see that more passing tests are produced without
using RAG. Providing the latest version of the OpenACC speci-
fication through RAG is essential to producing up-to-date tests,
given that the specification is updated yearly and it is unclear
what data relevant to the OpenACC specification LLMs have
been pre-trained on. Thus, we retain RAG in Stage 2, selecting
again an expressive prompt with a template and RAG, as with
Codellama-34b-Instruct.

In Stage 2, Phind-Codellama-34b-v2 produced 95 passing
tests out of 351 in the generated testsuite again by checking for
return code ”zero”. Again, the majority of errors are compile
errors rather than runtime or parsing errors. We also find that in
comparison to Codellama-34b-Instruct, Phind-Codellama-34b-
v2 produced less incomplete tests, shown as parsing error la-
beled in blue in Figure 6.

5.5. GPT-3.5-Turbo

We compare the performance of OpenAI’s GPT-3.5-Turbo
using the same five prompting methods as listed in Subsec-
tion 4.2. We also evaluate the performance of fine-tuned version
of GPT-3.5-Turbo as mentioned in Subsection 4.6. Figure 5
shows that GPT-3.5-Turbo with no fine-tuning using an expres-
sive prompt with RAG and template produced more passing
tests than other methods, by checking for return code ”zero”.

We fine-tune GPT-3.5-Turbo using the small and the large
datasets comprising of 50 and 1335 training examples respec-
tively. The generated tests with these models follow the testing
format shown in fine-tuning examples without being prompted
with a code template or one-shot example, so the results are
initially promising. We find in the Stage 1 results that both of
these models produce no passing tests, despite producing tests
with formatting similar to the test examples in the fine-tuning
dataset. We include the model fine-tuned on the large dataset in
the final analysis for a comparison with the prompt methods.

In full testsuite generation we evaluate the performance of
GPT-3.5-Turbo fine-tuned on 1335 examples. Using only RAG
in the prompts, this LLM produced 43 passing tests by checking
for return code ”zero”.

5.6. GPT 4

We evaluate the performance of OpenAI’s GPT-4 in Stage
1 with the 5 prompt methods listed in Section 4.2. GPT-4 pro-
duced the most passing tests using only a code template in the
prompt, and RAG with a code template produced the second-
most. Again, one-shot prompting was outperformed by a code
template. In this stage, we see that the expressive prompt us-
ing RAG with code template does not produce the most passing

GPT-3.5-
Turbo

GPT-4 CodeLlama-
34B-Instruct

Phind-
CodeLlama-
34B-v2

43/351 109/351 41/351 95/351

Table 3: Stage 2 results displaying Pass/Fail results for each generated testsuite

Figure 6: Stage 2 results using expressive prompt with RAG and test template
with all selected LLMs. We note that GPT-4 produced the most passing tests,
though this is not necessarily indicative of best performance.

tests, but we include it in Stage 2 to provide a consistent com-
parison among all models.

GPT-4 with expressive prompt using RAG with code tem-
plate for Stage 2 testsuite generation produced 109 passing tests
out of 351, the most out of any setup tested here. It also did not
succumb to many parsing errors, and had the least number of
compile errors. Due to these reasons, we decided to manually
analyze a representative set of 50 of the generated tests from
GPT-4 in a final analysis stage to determine whether the gen-
erated tests are implementing accurate testing logic and Ope-
nACC annotations.

The results are tabulated in Table 3.

5.7. GPT-4 Output Analysis

To systematically analyze the tests generated by GPT-4, we
manually evaluate a representative subset of 25 passing tests
and 25 failing tests. We find that 87.5% (22 tests) of the evalu-
ated passing tests properly implement an OpenACC validation
test (green), while 12.5% (3 tests) do not and produce a false
passing result (red), shown in Figure 7. A false pass (red) means
that the test does not properly test an OpenACC implementa-
tion, but still returns 0. For example, a test could be created for
the private clause, but the LLM may not actually use the pri-
vate clause, and still return 0. To evaluate why tests are failing,
we consider two cases: incorrect implementation of OpenACC
(yellow), or failure despite a correct OpenACC implementation
(blue). Incorrect implementation of OpenACC code means that
a feature of OpenACC is used incorrectly, thus causing a fail-
ure through compile error, runtime error, or a non-zero return
value. A failure despite a correct OpenACC implementation
means that the OpenACC logic could be correct, but there is an
error in the code somewhere else. This could be a syntax error,
use of a undefined function, incorrect testing logic, or an unim-
plemented feature or anything else that may cause a compile
error, runtime error, or non-zero return value. An example of
such a scenario could be a test that randomly fills an array with
numbers, then squares all elements within an OpenACC con-
struct, but then forgets to square the elements of the expected
output.
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Figure 7: Stage 3 results displaying the analysis of a representative subset of
generated tests by GPT-4. Green - True pass. Red - False Pass. Blue - Fails with
issues in base language or compiler implementation. Yellow - Fails with incor-
rect OpenACC usage. The analysis shows that most passing tests are correct
tests, whereas failing tests occur due to various reasons.

Throughout this analysis, we find that the majority of pass-
ing tests are correctly implementing OpenACC (green). The
presence of false passing tests (red) reaffirms that human eval-
uation is necessary for this task. Complete automation is not
yet plausible with the techniques described here. In failing tests
(blue and yellow), we find a variety of errors consisting of a
somewhat even distribution of errors due to incorrect OpenACC
logic and other causes.

5.8. Results Summary

Drawing a summary out of the above discussed results and
tying them to our contribution list from Section 1.1, we infer
the following:

• Out of the five prompt sets evaluated, and fine-tuning
with GPT-3.5-Turbo, we find the best performance with
an expressive prompt using RAG and a test template.

• For this study the fine-tuning dataset used to finetune
GPT-3.5-Turbo enabled the LLM to produce correct for-
mat of test without a one-shot example or code template,
as expected. However, the test quality still lacked indi-
cated by low passing rate.

• Out of the four models evaluated in Stage 2, we find that
GPT-4 produces the most passing tests

• In the final results analysis, we find that most passing
tests implement correct OpenACC logic, while failing
tests fail for a variety of reasons.

6. Discussion

By automating the process of generating functional test cases,
we are enabling the developers to not spend their time to write
these tests, instead spend their time on designing regression and
corner case tests - tests that we have not yet fully explored
LLMs for nor are we aware at this point how suitable LLMs

would be for those cases. Moreover, validation testsuite gener-
ation not a one and done task. The specification of program-
ming models constantly evolves. So a validation testsuite must
be maintained by a team of developers to be consistent with
the latest version of the specification. Until recently, natural-
language processing techniques were not advanced enough to
comprehend a long, complex programming model specification
and generate code to validate compiler implementations of the
specification. With LLMs, its much more viable. When the
specification is updated, an LLM can be used again to generate
an up-to-date testsuite.

We found that our initial expectations of the relative perfor-
mance of the selected models, based on benchmarks and related
work, were confirmed by our evaluation. We did not expect this
research in its first iteration, to necessarily implement a perfect
testsuite generation pipeline, but rather provide insight to the
capabilities of current models and areas for improvement and
motivation to adapt ideas to several other testsuite projects. The
performance of the selected LLMs on the HumanEval bench-
mark trends similarly to the pass rates and performance we
found in OpenACC testsuite generation. Though this is a reas-
suring result, we plan to create a high-performance computing
code generation benchmark especially with a focus on testing
for LLMs in the future.

To discuss the results further, first, we find that the use of
a simple code template rather than a one-shot example of test
implementation produced more passing tests. The difference
between these methods is that the template does not provide any
example OpenACC code or testing logic. This is interesting to
observe because the full example provides more context.

A potential cause in this result is the increase in length of
the input creating more complexity. It introduces potentially
unrelated OpenACC features into the prompt, and increases the
number of tokens in the input. The prompt all-together is long
- when using RAG, we include in each prompt the correspond-
ing section of the specification for the feature being tested. The
prompt itself is expressive, and the one-shot example is a full
test. All of this adds up to a long prompt, and additional com-
plexity from a full one-shot example seems to negatively impact
the test quality in this research.

Using a simple template reduces the input length and com-
plexity, allowing LLM to focus on the feature at hand, and not
the feature in the example. The use of an expressive prompt,
detailing the goal of the test and the desired behaviour, gener-
ally improved performance, despite the increase in input length.
We believe that the expressive prompt includes relevant context
to the task, while the one-shot example provided information
about irrelevant OpenACC features, thus confusing the LLM
leading to hallucinations.

Based on the manually created OpenACC testsuite results,
we initially expected higher pass rates for the testsuites gen-
erated in this work. The OpenACC V&V testsuite produces
81.4% passing tests (1087/1335) while the highest passing rate
from Stage 2 using GPT-4 is 31% (109/351). An important dis-
tinction here is the number of tests. The manually written test-
suite consists of 1335 tests, while the full test generated in this
work consist of 351 tests. The manually written tests consider
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more permutations of features than this work. Thus, number of
tests for each feature is not consistent between the tests gener-
ated in this work and the manually written suite, so the passing
rate is not a fair comparison. Nevertheless, we find through
evaluation that many tests that fail are indeed due to issues in
LLM, rather than incorrect implementation of OpenACC fea-
tures by compilers.

We discuss GPT-4 output analysis in Section 5.7 and the
different scenarios where tests fail. We find that the incorrect
use of OpenACC features often occurred not due to incorrect
use of the feature being tested, but rather due to improper use
of other OpenACC features within the test. For example, the
generated test might target the copyin clause, but the LLM may
implement another clause in the test, and use it incorrectly. A
potential solution to this source of error is to implement a RAG
method that includes the sections from the specification for all
OpenACC features used in each test, not only the single fea-
ture being tested. This solution would involve two steps. First,
planning of a test. Then, retrieval of all relevant sections, and
second, the generation of the test.

Another method that we suggest could improve the perfor-
mance of this work greatly is to give the LLM multiple attempts
at each test. This could involve simultaneous generation of mul-
tiple tests, compilation of each and running of each, analysis
of the output, and selection of the best test based on the out-
put. Within LLM benchmarking, this method is known as the
pass@k metric, where LLMs are given more than one attempt
at completing the task of the benchmark, e.g. code generation.

7. Conclusion

The purpose of this work is to apply LLMs to generation
of OpenACC test cases which in turn would be used to validate
and verify compiler implementations of the OpenACC specifi-
cation. As the specification is updated, the pipeline can be run
again to generate a new suite of tests that verify the newly added
features. Moreover, the improvement of techniques in optimiz-
ing large language model performance will likely improve the
overall performance of test case generation. This way we aim
to ”shift” where the developers use their valuable time and not
”replace” their efforts. This project requires human oversight
but at the same time also relieves them from writing tests that
LLMs can do a good job at.

This project is meant as a new application of the emerg-
ing LLMs in high performance computing. As an immediate
and on-going work we have have started to look into optimiz-
ing our methods and exploring the adaptability to the OpenMP
testsuite. As near future steps we will work with developers of
Kokkos, RAJA, Chapel, SYCL among others and explore the
usability and expandability of the approach based on their in-
puts and needs.

The harsh truth about the current state of LLMs is that they
can generate false and misleading output at times, despite vari-
ous efforts to discourage this behavior and we know that LLMs
hallucinate. We emphasize the need to exercise caution and
conduct human evaluation on all outputs that are used in pro-

duction. The accuracy of these methods is likely to improve as
the community continues to learn and make adjustments.
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