

THE SOLLVE OMPVV
OFFLOADING VERIFICATION
AND VALIDATION TEST SUITE

HANDBOOK

Prepared by: Joshua Hoke Davis
Last Updated: March 2, 2021

ABSTRACT

This handbook contains documentation for the OpenMP Offloading Verification and Validation
(OMPVV) test suite. Crucial to the success of the test suite is that the suite is easy to use and
contribute to. Procedures for using the suite are covered in detail in this handbook, including setting
up the suite, using the Makefile to compile and run tests and generate reports of results. Also covered
are procedures for adding new tests to the suite, reviewing tests, submitting issues, and the overall
workflow of OMPVV. The intent of this handbook is to equip collaborators with a readable and
useful reference for contributing, and to assist in onboarding new students as project developers.

TABLE OF CONTENTS

ABSTRACT 2

TABLE OF CONTENTS 2

LIST OF ILLUSTRATIONS 3

INTRODUCTION 5
Purpose, Scope, and Limitations 5
Methods of Research 5
Report Organization 5

SETTING UP THE SUITE 6
System Preparation 6
Cloning the Repository 7
Modifying make.def 7
Creating a system.def File For Your System 9

RUNNING THE SUITE 11
Directory Structure 11
The Makefile 11

GENERATING REPORTS 15
Raw Format 15
Reports for Post-processing 16
Reports for Viewing 17

CREATING NEW TESTS 21
Project Workflow 21
The OMPVV Header File 22
Coding Standards 23

2

CONTRIBUTING TO THE SUITE 26
Pull Requests 26
Issues 26
Vendor Bug Reports 27

APPENDIX A: Interview 28

APPENDIX B: Changes from previous versions 29
Changes from version 1.0 to version 1.1 29

WORKS CITED 30

LIST OF ILLUSTRATIONS

3

Figure 1: Table of Popular OpenMP Offloading Compilers 6

Figure 2: An example of a set of compiler flags specified in the make.def file 7

Figure 3: Table of OMPVV test suite default flags used for supported flags 8

Figure 4: An example of a compiler module definition in summit.def 9

Figure 5: Select examples of Makefile commands for the test suite 11

Figure 6: All OMPVV Makefile options for compiling and running tests 12

Figure 7: All custom rules provided by the OMPVV Makefile 12

Figure 8: Example of output from running the test suite with the Makefile 13

Figure 9: Format of a log file segment header and footer 15

Figure 10: Example of a complete log file segment 16

Figure 11: Partial example of a JSON report file 16

Figure 12: Partial example of an HTML report file 17

Figure 13: Example of a report summary 17

Figure 14: Screenshot of an example HTML results report, viewed in Google Chrome 18

Figure 15: Example usage of the online report Makefile rule 19

Figure 16: OMPVV Makefile options for the online report rule 19

Figure 17: The OMPVV workflow for creating new tests 21

Figure 18: Table of OMPVV header file macros 22

Figure 19: Example of a specification-based test from the OMPVV suite 23

Figure 20: Steps to ensure your branch is up-to-date with master 26

Figure 21: Information requested in each category of Github issue 26

4

INTRODUCTION

Purpose, Scope, and Limitations

The purpose of this handbook is to make it easier to bring on new contributors to the OpenMP
Verification and Validation (OMPVV) project and to engage interested researchers with the suite and
enable them to to get the suite working on their machine. The scope of this document includes:

● Cloning the repository, building the test suite, and running the tests
● Processing results and creating a report
● Coding standards and format for contributing new tests
● Submitting issues and pull requests
● Submitting bugs to vendors
● Installing and building compilers for offload support
● Creating a definitions file for a new machine
● Documentation of makefile options with examples
● Documentation of macros provided by the test suite header file

Note: Some machines often used by the project, including Summit at Oak Ridge Leadership
Computing Facility and those that are covered under non-disclosure agreements between Oak Ridge
National Lab, the University of Delaware, and vendors, are not available for public use, so
instructions for accessing these particular machines and submitting jobs to them will not be provided
on public-facing documents.

Methods of Research

Sources for this handbook include interviews with the developers, personal experience of the author
as a developer, and publically-available documentation on the project website and Github. Interviews
with users are planned, and feedback from those interviews will be integrated in the future.

Report Organization

This report is organized generally in sequence from the most basic steps in getting started running the
suite to contributing tests and filing bug reports. The first content section starts with preparing your
system to run the test suite.

5

SETTING UP THE SUITE

System Preparation

Running the test suite first requires access to a machine with offloading hardware (i.e., a GPU or
other accelerator that is distinct from the main CPU). At least one compiler that supports OpenMP
offloading must also be installed on the system. Figure 1 below lists popular OpenMP offloading
compilers, along with the hardware supported by that compiler and the latest release version as of
May 2020. Compiler packages typically support C, C++ and Fortran.

Figure 1: Table of Popular OpenMP Offloading Compilers (Source: self-made)

Additionally, a Linux-based system with a BASH environment, as well as GNU git and Make are
expected. For results reporting, Python 3 is required, and the online report feature requires either the
“requests” package or Curl (“requests” is preferred). More details on results reporting and the online
report feature can be found in the Generating Reports section of this handbook.

Steps for installing each of these compilers can be found on the vendors’ websites, and are outside of
this handbook’s scope. More information on this topic can be found at
https://crpl.cis.udel.edu/ompvvsollve/project/gettingstarted/​.

6

Compiler
Package

Invocation Names
(C/C++/Fortran)

Vendo
r

Offload Hardware Supported Latest Release (of May 2020)

GCC gcc, g++,

gfortran

GNU Intel MIC, Nvidia PTX/CUDA,
AMD HSAIL/GCN

10.1 (30-04-2020)

Clang clang,

clang++

LLVM Nvidia CUDA (partial) 10.0.0 (24-04-2020)

XL xlc, xlc++,

xlf

IBM Nvidia CUDA 16.1.1 (30-11-2019)

ICC icc, i++,

ifort

Intel Intel Integrated Graphics 19.0.8 (6-4-2019)

AOMP clang,

clang++

AMD AMD GCN 11.5-0 (30-04-2020)

CCE cc, CC, ftn Cray Nvidia CUDA, AMD GCN 9.1.1 (19-12-2019)

https://crpl.cis.udel.edu/ompvvsollve/project/gettingstarted/

Cloning the Repository

The test suite uses Git for version control. The following command will download the test suite
repository to your system:

Modifying make.def

The ​make.def​ file (found in the ​sys/make/​ directory of the repository) tells the OMPVV
Makefile what flags to use for the compiler(s) you choose to run.

If you are using a recent version of one of the popular compilers listed in Figure 1 above, then it is
possible you will not need to modify the provided make.def, as it already includes the needed flags
for most compilers. However, even in this case it is wise to review the provided flags, as in some
cases they will need to change based on the particular type of offloading device you are targeting. For
example, the Cray and LLVM compilers require hardware-specific information like the “sm” number
for Nvidia targets and the “gfx” number for AMD targets. Figure 2 is an example of a simple flag
definition.

Figure 2: An example of a set of compiler flags specified in the make.def file (Source:

https://crpl.cis.udel.edu/ompvvsollve)

Figure 2 above shows the basic format for adding flags to the make.def file. First, ​$(CC)​ is the
language in question. This example is for a C compiler, so the symbol should be swapped out for
$(CXX)​ or ​$(FC)​ for C++ or Fortran compilers. ​cc​ is the invocation name for the compiler, which
depends on the compiler package being tested and the language, as seen in Figure 1 above.

CFLAGS​ is the list of flags for the compiler, ​CLINK​ is the linker to be used (typically the same as the
compiler), and ​CLINKFLAGS​ is the list of flags for the linker (also typically the same as the flags for
the compiler). These names vary slightly for different languages. For example, ​CFLAGS​ becomes
CXXFLAGS​ for C++ and ​FFLAGS​ for Fortran.

7

git clone https://github.com/SOLLVE/sollve_vv.git

CRAY compiler

ifeq ($(CC), cc)

 CFLAGS += -fopenmp -fopenmp-targets=nvptx64 -Xopenmp-target -march=sm_70

 CLINK = cc

 CLINKFLAGS += -fopenmp -fopenmp-targets=nvptx64 -Xopenmp-target -march=sm_70

endif

More examples of definitions can be found in the provided ​make.def​, as mentioned above. Figure
3, below, shows the standard flags the ​make.def​ already includes for each pre-supported compiler.

Figure 3: Table of OMPVV test suite default flags used for supported flags (Source: “A Test Suite

Design And Implementation For Openmp 4.5 Offloading Features”, Jose Diaz (thesis))

8

Compiler Language Flags

GNU ​gcc C -O3 -std=c99 -fopenmp -foffload=”-lm” -lm

GNU ​g++ C++ -O3 -std=c++11 -fopenmp -foffload=”-lm”
-lm

GNU ​gfortran Fortran -O3 -fopenmp -foffload=”-lm” -lm
-ffree-line-length-none -J./ompvv

LLVM ​clang C -lm -O3 -fopenmp
-fopenmp-targets=nvptx64-nvidia-cuda
-D__NO_MATH_INLINES -U__SSE2_MATH__
-U__SSE_MATH__

LLVM ​clang++ C++ -std=c++11 -lm -O3 -fopenmp
-fopenmp-targets=nvptx64-nvidia-cuda
-D__NO_MATH_INLINES -U__SSE2_MATH__
-U__SSE_MATH__

IBM ​xlc C -O3 -qsmp=omp -qoffload

IBM ​xlc++ C++ -O3 -qsmp=omp -qoffload

IBM ​xlf Fortran -O3 -qsmp=omp -qoffload -qmoddir=./ompvv
-DEXIT=EXIT_

Cray ​cc C -homp -O3 -lm

Cray ​CC C++ -homp -O3 -lm

AMD AOMP
clang

C -lm -O3 -fopenmp -target $(AOMP
CPUTARGET) -fopenmptargets=$(AOMP
GPUTARGET) -Xopenmp-target=$(AOMP
GPUTARGET) -march=$(AOMP GPU)
-D__NO_MATH_INLINES -U__SSE2_MATH__
-U__SSE_MATH__

AMD AOMP
clang++

C++ -std=c++11 -lm -O3 -fopenmp -target
$(AOMP CPUTARGET) -fopenmptargets=$(AOMP
GPUTARGET) -Xopenmp-target=$(AOMP
GPUTARGET) -march=$(AOMP GPU)
-D__NO_MATH_INLINES -U__SSE2_MATH__
-U__SSE_MATH__

Creating a system.def File For Your System

For systems that use Environment Modules, the test suite is designed to automatically swap out the
modules needed to load a new compiler. This helps to guarantee that the correct compiler is being
used, and allows the user to avoid having to modify environment variables repeatedly when they
wish to test multiple compilers. The test suite infrastructure uses custom system definition files to
know which modules to load for a given compiler. These files also contain information needed to
interact with the job scheduler, if needed. Each definitions file is named after the system name,
followed by a ​.def​.

If you plan to test multiple compilers on your system, or you are running on a system using a job
scheduler (such as Slurm), it is recommended that you create a unique ​.def​ file for your system.
System definition files are stored in ​sys/systems/​. In order to use a ​.def​ file for compiler
swapping, you will need to have installed your compilers using Environment Modules
(​http://modules.sourceforge.net/​). A ​.def​ file is already provided in the directory for most systems
the suite is regularly tested on (for example, for Summit a file called ​summit.def​ is provided).

To assist with creating your own system definitions file, a template called ​generic.def​ is also
provided, which should be copied to a file called ​<your system name>.def​ and modified to
make the process easier. Figure 4 is an example of a module specification for a compiler, taken from
the Summit definitions file.

Figure 4: An example of a compiler module definition in summit.def (Source:

https://crpl.cis.udel.edu/ompvvsollve)

As seen in ​make.def​, the ​$(CC)​ variable and the prefixes of the variables contained in the
definition vary by language, and ​gcc​ is the invocation name for the compiler in question.
C_COMPILER_MODULE​ should be set to the name of the exact module needed for the compiler to
load. To view available modules for a given compiler, run “​module avail​ ​” followed by the
compiler name in a bash shell. If more than one module is needed in order to load your compiler,
then add the modules after the first, separated by “​; module load ​”. ​C_VERSION​ should be set
to a one-line command to print the version of the compiler (needed for result reporting).

At the top of the file, the variable ​CUDA_MODULE​ should also be set to your system’s CUDA
module, and if needed, the batch scheduler command should be provided to the

9

GCC compiler

ifeq ($(CC), gcc)

 C_COMPILER_MODULE = gcc/8.1.1

 C_VERSION = gcc -dumpversion

endif

http://modules.sourceforge.net/

BATCH_SCHEDULER​ variable. Once again, more detailed examples can be found in the provided
system definitions files.

Once your system is fully configured, you can run the test and root out any mistakes using the
Makefile, as described in the next section of this handbook.

10

RUNNING THE SUITE

Directory Structure

The Git repository for the project is structured into the following folders:

● ompvv​: Contains the project header files and static library
● sys​: Contains .def files and reporting scripts, grouped into the following subfolders:

○ make​: Contains the make.def file for compiler flags
○ results_template​: Contains the html template used for results reporting
○ scripts​: Contains scripts used for running tests and generating results
○ sys​: Contains system definition files for module loading

● template​: Contains test templates in C and Fortran
● tests​: Contains tests files, organized by specification version and then by category. Each

test starts with ​test_​, except for those filed under ​application_kernels​.

After compiling and generating results reports, the following additional folders will be created:

● bin​: Contains the compiled binary files of the tests.
● logs​: Contains the raw format log files if the LOG option was specified.
● results_report​: Created when the make rule ​report_html​ is used, contains an html

version of the results

The Makefile

The test suite uses a Makefile to manage building and running all tests, which should be run from the
root of the project repository. Figure 5 below lists a few examples of Makefile commands and a full
list of available options. In general, it is a good idea to run either ‘​make clean​’ (if you want to
keep old logs) or ‘​make tidy​’ (if you want to start with a completely clean slate) before compiling
any tests.

Figure 5: Select examples of Makefile commands for the test suite (Source:

https://crpl.cis.udel.edu/ompvvsollve)

To both run and compile tests, the ‘​all​’ rule is used in Figure 4. If you want only to compile, use
the ‘​compile​’ rule, and if you want only to run tests, use the ‘​run​’ rule (this runs all
already-compiled binaries in the ​bin​ directory, so the sources flag should not be used). Figure 6
(below on page 12) lists all options available for compiling.

11

make CC=gcc CXX=g++ FC=gfortran all ​# compile and run all test cases with GCC
make CC=gcc SOURCES=a.c all ​# compile and run a.c with gcc
make CXX=g++ SOURCES=tests/target/* all #​ compile and run all tests/target tests

Figure 6: All OMPVV Makefile options for compiling and running tests (Source: self-made)

The Makefile also provides a number of additional rules, shown in Figure 7 below (extending to page
13), for cleaning out old logs and generating results reports. Result reporting is covered later in this
handbook, but the options are included in the table for completion.

12

Option Description

SOURCES=[file or path] Specify a file to run. Supports wildcard (*) and can be used with or without
the path to the test

CC=[compiler] Specify a C compiler (e.g., gcc or clang)

CXX=[compiler] Specify a C++ compiler (e.g., g++ or clang++)

FC=[compiler] Specify a Fortran compiler (e.g., gfortran or xlf)

VERBOSE=1 Enable extra output information from make process

VERBOSE_TESTS=1 Enable extra output information from tests

LOG=1 Enable dump of make process output into logs

LOG_ALL=1 Enable dump of errors and test execution output into logs

OMP_VERSION=[4.5 or 5.0] Specify OpenMP specification version, defaults to 4.5

NUM_THREADS_HOST=[n] Specify number of threads to use on the host

NUM_THREADS_DEVICE=[n] Specify number of threads to use on the device

NUM_TEAMS_HOST=[n] Specify number of teams to use on the device

SYSTEM=[system name] Enable inclusion of the specified ​system.def​ file (do not include .def part)

MODULE_LOAD=1 Enable loading of modules (must also specify a system using SYSTEM=)

ADD_BATCH_SCHED=1 Enable execution using job scheduler command specified in ​make.def

NO_OFFLOADING=1 Disable offloading (experimental)

rule Description

all Compile and run all tests or tests specified with the SOURCES option

compile Just compile all tests or tests specified with the SOURCES option

run Just run the all previously-compiled tests or tests specified with the

Figure 7: All custom rules provided by the OMPVV Makefile (Source: self-made)

If your make command is successful, you should receive output something like that displayed in
Figure 8 below.

Note: if many tests are specified the runs could take a few minutes to generate, and if
VERBOSE_TESTS=1​ is set, the output will be considerably longer than shown in Figure 8.

Figure 8: Example of output from running the test suite with the Makefile (Source:

https://crpl.cis.udel.edu/ompvvsollve)

13

SOURCES option

clean Remove all binaries, from the ​bin​ folder

tidy Remove all binaries (​bin​ folder), logs (​log​ folder), and results reports

compilers List currently-available compiler configuration

report_csv Create a csv-formatted report from the logs in the ​log​ folder

report_json Create a json-formatted report from the logs in the ​log ​folder

report_summary Create a short summary report in the console listing tests that failed, from the
logs in the ​log​ folder

report_html Create a prettified report using the HTML template, from the logs in the ​log
folder

report_online Create an HTML report and upload to it to the OMPVV website for easier
sharing (experimental)

==== SOLLVE PROJECT MAKEFILE ====

Running make with the following compilers

CC = gcc 9.0.0

CXX = g++ 9.0.0

 compile: tests/offloading_success.c

 running: bin/offloading_success.c.run

/home/josem/Documents/Sunita/Projects/SOLLVE/sollve_vv/sys/scripts/run_test.sh

bin/offloading_success.c.o

offloading_success.c.o: PASS. exit code: 0

====COMPILE AND RUN DONE====

If you ran the make command with the ​LOG=1​ and ​LOG_ALL=1​ options, a ​logs​ folder will have
been created, containing the logs of all tests run. In the next section, this handbook covers creating
reports from those logs.

14

GENERATING REPORTS

Raw Format

The ​logs​ folder contains individual log files for each test run using the ​LOG=1​ and ​LOG_ALL=1
Makefile options. Each file is divided into segments, one segment per run or compile operation. For
example, if ​test_target_teams_distribute.c​ is run and compiled once with ​gcc​ and
once with ​clang​, there will be four segments in the file: ​gcc​ compile, ​gcc​ run, ​clang​ compile,
and ​clang​ run.

Each segment has three parts, a header, the output, and a footer. The header and footer contain
formatted information regarding that operation, as shown in Figure 9.

Figure 9: Format of a log file segment header and footer (Source:

https://crpl.cis.udel.edu/ompvvsollve)

The output segment, which is between the header and the footer, will contain all output printed to the
console by the test. The format for this output is standardized by the OMPVV header file. The header
file is covered in detail in the next section. Figure 10 (below on page 16) shows an example of a
complete log file segment.

15

HEADER:

--*BEGIN*-*-*COMPILE (command)/RUN*-*-*DATE (long format) *-*-*SYSTEM

NAME*-*-*SOURCE FILE TESTS*-*-*COMPILER VERSION/RUNTIME COMMENTS*-*-*GIT COMMIT*-*-*

FOOTER:

--*END*-*-*COMPILE (command)/RUN*-*-*DATE (long format)*-*-*SYSTEM

NAME*-*-*PASS/FAIL*-*-*COMMENTS*-*-*GIT COMMIT*-*-*

Figure 10: Example of a complete log file segment (Source: https://crpl.cis.udel.edu/ompvvsollve)

Reports for Post-processing

As shown in Figure 7 in the previous section, a number of Makefile rules are available for generating
various types of reports. The first category of reports available are those that are useful for
post-processing. These report rules condense all log files into a single intermediate format, either
JSON and CSV.

Note: using these rules requires Python 3 or greater to be installed on your system.

To create a JSON report, use the rule ‘​make report_json​’. A JSON report is formatted as
shown in Figure 11 (below, continued on page 17).

Note: the file contains terminal coloring codes like ‘​\u001b[0;32m​’ which result from the test
suite Makefile’s coloring features.

16

--*BEGIN*-*-*COMPILE CC=gcc -I./ompvv -O3 -std=c99 -fopenmp -foffload=-lm -lm

--*Wed May 9 19:15:47 EDT

2018*-*-**-*-*/home/josem/Documents/Sunita/Projects/SOLLVE/sollve_vv/tests/applicati

on_kernels/mmm_target.c*-*-*gcc 9.0.0*-*-*04e92c8*-*-*

--*END*-*-*COMPILE CC=gcc -I./ompvv -O3 -std=c99 -fopenmp -foffload=-lm -lm

--*Wed May 9 19:15:47 EDT 2018*-*-**-*-*PASS*-*-*none*-*-*04e92c8*-*-*

--*BEGIN*-*-*RUN*-*-*Wed May 9 19:16:06 EDT

2018*-*-**-*-*bin/mmm_target.c*-*-*none*-*-**-*-*04e92c8*-*-*

 running: bin/mmm_target.c.run

mmm_target.c.o: PASS. exit code: 0

mmm_target.c.o:

Total time for A[500][500] X B[500][500] on device using target directive only:37

Test PASSED.

--*END*-*-*RUN*-*-*Wed May 9 19:16:43 EDT

2018*-*-**-*-*PASS*-*-*none*-*-*04e92c8*-*-*

 [

 ...,

 {

 "Binary path": "bin/mmm_target.c",

 "Compiler command": "gcc -I./ompvv -O3 -std=c99 -fopenmp -foffload=-lm -lm ",

 "Compiler ending date": "Wed May 9 19:16:43 EDT 2018",

 "Compiler name": "gcc 9.0.0",

 "Compiler output": "",

 "Compiler result": "PASS",

 "Compiler starting date": "Wed May 9 19:15:47 EDT 2018",

 "Runtime ending date": "Wed May 9 19:16:43 EDT 2018",

 "Runtime only": false,

 "Runtime output": "\u001b[0;32m \n\n running: bin/mmm_target.c.run

Figure 11: Partial example of a JSON report file (Source: https://crpl.cis.udel.edu/ompvvsollve)

To create a CSV report, use the rule ‘​make report_csv​’. A CSV report is formatted as shown in
Figure 12 below, and can be imported into applications like Microsoft Excel for viewing and
manipulation.

Figure 12: Partial example of an HTML report file (Source: https://crpl.cis.udel.edu/ompvvsollve)

Reports for Viewing

While intermediate report formats are useful for feeding into visualization scripts, more often than
not you will want to see the results immediately after running a batch of tests.

Note: Once again, using these rules requires Python 3 or greater to be installed on your system.

The quickest way to see the outcomes of your tests is with the rule ‘​make report_summary​’,
which provides a short in-console overview of the test results. It will look something like the
example shown in Figure 13 (below, continues on page 18).

17

\u001b[0m\nmmm_target.c.o: PASS. exit code: 0\n\u001b[0;31mmmm_target.c.o:\nTotal

time for A[500][500] X B[500][500] on device using target directive only:37 \nTest

PASSED.\u001b[0m\n",

 "Runtime result": "PASS",

 "Runtime starting date": "Wed May 9 19:16:06 EDT 2018",

 "Test comments": "none\n",

 "Test name": "mmm_target.c",

 "Test path":

"/home/josem/Documents/Sunita/Projects/SOLLVE/sollve_vv/tests/application_kernels/mm

m_target.c",

 "Test system": "",

 "Test gitCommit": "04e92c8"

 },...

]

testSystem, testName, testPath, compilerName,compilerCommand,

startingCompilerDate,endingCompilerDate, compilerPass, compilerOutput,runtimeOnly,

binaryPath, startingRuntimeDate,endingRuntimeDate, runtimePass, runtimeOutput,

gitCommit, testComments

"fatnode", "offloading_success.c", "tests/4.5/offloading_success.c", "gcc 9.0.0",

"gcc -I./ompvv -O3 -std=c99 -fopenmp -foffload=-lm -lm", "Mon Dec 2 19:09:35 EST

2019", "Mon Dec 2 19:09:36 EST 2019", "PASS", "", "False",

"bin/offloading_success.c", "Mon Dec 2 19:09:36 EST 2019", "Mon Dec 2 19:09:37 EST

2019", "PASS", "^[[0;32m running: bin/offloading_success.c.run

^[[0moffloading_success.c.o: PASS. exit code: 0^[[0;31moffloading_success.c.o:Target

region executed on the device^[[0m", "04e92c8", "none"

make report_summary

Figure 13: Example of a report summary (Source: https://crpl.cis.udel.edu/ompvvsollve)

For a more detailed and visually appealing report, the ‘​make report_html​’ rule will generate a
HTML webpage from the log files, using the template provided in the repository. This page will be
stored in a new folder called ​results_report​, and can be uploaded to a web server if desired.
Figure 14 below shows an example screenshot of the generated web page. CSS and Javascript must
be supported by your web browser in order to view the page.

Figure 14: Screenshot of an example HTML results report, viewed in Google Chrome

(Source: self-made)

18

"Including generic.def file"

FAILED

Checked 97 runs

Reported errors(8):

 test_target_data_use_device_ptr.c on gcc 9.0.0 (compiler)

 test_target_enter_exit_data_classes.cpp on g++ 9.0.0 (compiler)

 test_target_map_classes_default.cpp on g++ 9.0.0 (runtime)

 test_target_teams_distribute_collapse.c on gcc 9.0.0 (runtime)

 test_target_teams_distribute_nowait.c on gcc 9.0.0 (runtime)

 test_target_teams_distribute_parallel_for_firstprivate.c on gcc 9.0.0 (runtime)

 test_target_teams_distribute_reduction_and.c on gcc 9.0.0 (compiler)

 test_target_teams_distribute_reduction_or.c on gcc 9.0.0 (compiler)

Finally, to make it easier to share the results, the new ‘​make report_online​’ feature has been
recently added. This rule creates an HTML report and uploads it to a OMPVV project web server,
printing to the console a link to the page. This allows for quick and easy sharing of the results, as this
link is accessible from any web browser connected to the Internet. Your published results will be
retained for a period of one month. Figure 15 below shows an example of using the online report
feature. In addition to Python 3 or greater, this rule requires either the ‘requests’ package or Curl to
be installed. ‘requests’ is preferred, as it has superior error-handling. It can be installed via pip using
the command ‘​pip install requests​’.

Figure 15: Example usage of the online report Makefile rule (Source:

https://crpl.cis.udel.edu/ompvvsollve)

As shown in Figure 15 above, the output of the online report rule provides, in addition to the link to
the webpage, a unique tag. This tag should be kept for future use, as it can be used to append results
to the same report using the two special Makefile options provided for the online report feature.
Figure 16 lists these two options and describes their use.

Figure 16: OMPVV Makefile options for the online report rule (Source: self-made)

19

> make report_online

"Including generic.def file"

Creating results.json file

Currently we only support run logs that contain compilation and run outputs. Use the

'make all' rule to obtain these

 === SUBMITTING ONLINE REPORT ===

We are using CURL because we could not find the `requests` package

Error handling is limited. Please consider installing `requests` through

 pip install requests

 Your report tag is 402796c6e. Do not lose this number

 Visit your report at:

https://crpl.cis.udel.edu/ompvvsollve/result_report/results.html?result_report=40279

6c6e

 This tool is for visualization purposes.

 Our data retention policy is 1 month.

 After this time, we do not guarantee this link will work anymore

 === SUBMISSION DONE ===

Option Description

REPORT_ONLINE_TAG=[tag] Specify an online report tag. If a report with this tag exists, the generating
report will replace the existing report, unless the
REPORT_ONLINE_APPEND​ option is used.

REPORT_ONLINE_APPEND=1 Enables appending of the generating report to an existing report. Requires the
REPORT_ONLINE_TAG​ option to be specified.

Now that the full process of using the test suite, from setup to reporting, has been covered, the
remainder of this test suite will focus on procedures for creating new tests and contributing to the
suite.

20

CREATING NEW TESTS

Project Workflow

New tests for the repository are categorized into two types, application kernels and construct tests.
Application kernels are taken from real-world applications, while construct tests are created by the
developers from a close reading of the relevant sections of the OpenMP specifications. Tests that are
taken from the specification are divided into folders by which OpenMP construct or combined
construct they apply to. Figure 16 shows the general procedure followed to ensure new tests comply
with the specification before adding them to the suite.

Figure 17: The OMPVV workflow for creating new tests (Source:
https://crpl.cis.udel.edu/ompvvsollve)

As shown in Figure 17 above, tests start from either the specification or an application. Typically, a
specification-based test is aimed at checking one construct or one clause on one construct, and
ensures that the behavior required by the specification is upheld for that construct or clause.

After a test is first formulated, it is submitted for discussion, tested, and reviewed by the community.
If it passes through each of these steps, it is added to the test suite.

21

A test, when compiled and run (i.e., when it is tested), will either pass or fail. When a test that is
thought to be valid fails, it is due to one of three problems. First, the compiler implementation could
be incorrect, in which case a bug report must be filed with that compiler’s vendor. Second, there
could be an ambiguity or contradiction in the specification, in which case the issue must be brought
to the OpenMP community. Finally, the test itself could be invalid, in which case the developer of
the test must revise it.

The OMPVV Header File

In order to ensure output for each test is standardized and formatted consistently, the test suite
includes header files in C and Fortran that all tests must use for checking assertions and printing
output. Figure 18 (below, continues on page 23) details the available macros. See Figure 19 (pages
23-24) for some usage examples in context.

22

Macro Description

OMPVV_INFOMSG(message, ...)

If VERBOSE_MODE is defined, print
an info message with the header
[OMPVV_INFO filename.c:]

OMPVV_INFOMSG_IF(condition, message, ...)

If VERBOSE_MODE is defined and
(condition == true), print an info
message with the header
[OMPVV_INFO filename.c:]

OMPVV_WARNING(message, ...)

If VERBOSE_MODE is defined, print a
warning message with the header
[OMPVV_WARNING filename.c:]

OMPVV_WARNING_IF(condition, message, ...)

If VERBOSE_MODE is defined and
(condition == true), print a warning
message with the header
[OMPVV_WARNING filename.c:]

OMPVV_ERROR(message, ...)

If VERBOSE_MODE is define, print an
error message in stderr with the header
[OMPVV_ERROR filename.c:]

OMPVV_ERROR_IF(condition, message, ...)

If VERBOSE_MODE is defined and
(condition == true), print an error
message in stderr with the header
[OMPVV_ERROR filename.c:]

Figure 18: Table of OMPVV header file macros (Source: https://crpl.cis.udel.edu/ompvvsollve)

Coding Standards

Similarly, the test suite has a number of coding standards that should be followed when creating new
tests. Figure 19 (continues on page 24) shows an example of a test which follows the coding
standards.

23

OMPVV_TEST_OFFLOADING

check if offloading is enabled, fill this
variable with such information. If
VERBOSE_MODE is defined, print an
info messages saying where the test is
running (e.g. [OMPVV_INFO test.c:20]
Test is running on device.).

OMPVV_TEST_AND_SET_OFFLOADING(var2set)

Same as
OMPVV_TEST_OFFLOADING, but
sets the variable var2set with the result
to be used outside.

OMPVV_TEST_AND_SET(err, errorCondition)
If the errorCondition is true, error will be
set to true.

OMPVV_TEST_AND_SET_VERBOSE(err, errorCondition)

If the errorCondition is true, error will be
set to true. If VERBOSE_MODE, an
error message will be generated when
the errorCondition is true. The
errorCondition is the condition that is
required to generate an error

OMPVV_REPORT(err)

Based on the ​err​ variable, print if the test
passes or fails (e.g. [OMPVV_RESULT]
Test passed on the device).

OMPVV_RETURN(err)

Based on the ​err​ variable, return
EXIT_SUCCESS​ or ​EXIT_FAILURE​. ​err
should be 0 if no error was encountered
during the test

OMPVV_REPORT_AND_RETURN(err)
Same as calling OMPVV_REPORT and
OMPVV_RETURN one after the other

//===-- test_target_data_map_from.c ---------------------------------------===//

//

// OpenMP API Version 4.5 Nov 2015

//

Figure 19: Example of a specification-based test from the OMPVV suite (Source:

https://crpl.cis.udel.edu/ompvvsollve)

Figure 19 also exemplifies the use of header file macros, as documented in Figure 18 (pages 22-23).
This example demonstrates the use of the following key rules from the coding standards:

24

// This file is a test for the target data construct when used with the map

// clause. This clause should create the mapping of variables into the device

// and do the data movement or allocation depending on the map type modifier

// from. This test uses arrays of size N which values are modified in the

// device and tested in the host.

//

//===--===//

#include <omp.h>

#include <stdio.h>

#include “ompvv.h”

// Test for OpenMP 4.5 target data map(from:)

int main() {

 OMPVV_TEST_OFFLOADING;

 int sum = 0, sum2 = 0, errors = 0, isHost = 0;

 // host arrays: heap and stack

 int *h_array_h = (int *)malloc(N*sizeof(int));

 int h_array_s[N];

#pragma omp target data map(from: h_array_h[0:N]) \

 map(from: h_array_s[0:N]) \

 map(from: isHost)

 {

#pragma omp target

 {

 isHost = omp_is_initial_device();

 for (int i = 0; i < N; ++i) {

 h_array_h[i] = 1;

 h_array_s[i] = 2;

 }

 } // end target

 } // end target data

 // checking results

 for (int i = 0; i < N; ++i) {

 sum += h_array_h[i];

 sum2 += h_array_s[i];

 }

 free(h_array_h);

 OMPVV_TEST_AND_SET_VERBOSE(errors, N != sum) || (2*N != sum2));

 OMPVV_INFOMSG_IF(errors, "Test failed on %s: sum=%d, sum2=%d, N=%d\n", (isHost ?

"host" : "device"), sum, sum2, N);

 OMPVV_REPORT_AND_RETURN(errors);

}

1. All tests should start with a top-of-file header comment fully describing the test, and
formatted as shown in Figure 19 (above on page 24)

2. Indentation should be performed with two spaces, and never with tabs.

3. Spaces should appear in the following situations:

a. Before opening parenthesis after any control flow statement (e.g., if, for and while).

b. After closing parenthesis before opening brace for a code block.

c. Around arithmetic, logical, and assignment operators, except * and /.

d. After commas in function parameter and argument lists, and in lists within OpenMP
clauses

e. After the colon in an OpenMP clause in which the colon precedes a list

4. No spaces should appear between function name and opening parenthesis in function calls, or
between the increment/decrement operator and the variable name.

5. In OpenMP clauses, no spaces should appear around colons in array sections, or between the
variable name and opening bracket for array sections

6. C-style comments using // are preferred

7. OpenMP pragmas should be unindented

25

CONTRIBUTING TO THE SUITE

Pull Requests

When working on a new test, commit your test and any changes to that test to a new git branch from
master called ​new_test/<name_of_your_test>​. Similarly, if working on a bug fix for a test,
prefix the branch name with ​fix_test/​, or if working on the infrastructure, prefix with
infrastructure/​. Before creating any pull request for your branch, make sure it is synchronized
with master by running the git commands shown in Figure 20.

Figure 20: Steps to ensure your branch is up-to-date with master (Source:

https://crpl.cis.udel.edu/ompvvsollve)

Once a branch is ready to be merged, you can start the review process (see Figure 16) by creating a
pull request (PR) on the project Github (​https://github.com/SOLLVE/sollve_vv​), to merge your
branch with master. Include in the request a description of your changes and the current testing
results for the changes on a particular system. Be sure also to request reviews from the developers,
and add the appropriate tags for the pull request (for example, if your PR is a new test, add the
“new_test” flag, and if your PR is a bug fix, use the “fix_bug” tag). If your PR addresses an issue,
indicate the issue number.

After submitting a pull request, you will be notified of any comments or reviews on the request. It is
your responsibility as the developer to respond to those comments. When a PR has received at least
two approving reviews from the developers, it will be merged to the master branch.

Issues

If you encounter a problem with the test suite, such as a bug in the infrastructure or in a test, or you
want to propose a new feature or idea for a test, create an issue on the project Github. There are
template forms on the project Github for each of these three categories of issue (bug report, feature
request, and test request), which will request the information shown in Figure 21 (below, continues
on page 27) to help the developers tackle your issue.

26

git fetch upstream

git checkout <your branch name here>

git merge upstream/master

Category Requested Information

Bug Fix ● Clear and concise description of the bug

https://github.com/SOLLVE/sollve_vv

Figure 21: Information requested in each category of Github issue (Source: self-made)

After submitting an issue, you will receive notification of any comments on the issue. It is your
responsibility to respond to comments to help the developers address your issue. Be sure also to add
any additional tags needed to categorize your bug report, such as “5.0” if it applies to specification
version 5.0, or “infrastructure” if it applies to testing infrastructure.

Vendor Bug Reports

In some cases, during the development of the suite it is necessary to file a bug report with a compiler
vendor when one of the tests indicates there is a problem with their implementation of OpenMP.
Before filing any bug with a vendor, be sure that the test had been determined to be valid by the
OMPVV developers and that you fully understand the behavior of your code, as well as the expected
behavior. A good bug report should also include a simple working example of a code that
demonstrates the bug (usually this is just a stripped-down version of one of the OMPVV tests).

For some compilers, filing a bug report is simply a matter of emailing the appropriate contact, and
email addresses of those contacts can be found on the Github wiki for the project. However, for GCC
and Clang, you must file the report through the Bugzilla system. GCC has a form for creating
Bugzilla accounts (​https://gcc.gnu.org/bugzilla​), while for Clang you must email
bugs-admin@lists.llvm.org​ in order to request an account. Follow the particular instructions on the
Bugzilla to complete your bug report.

27

● Test or a list of tests it applies to
● Steps needed to reproduce the bug
● Description of the expected behavior
● Which compilers were used in finding the bugs
● What accelerator hardware was used in finding the bugs

Feature Request ● Description of any problem with the suite related to the feature
being requested (e.g., “I’m always frustrated when…”)

● Description of the requested solution to the problem
● Description of any alternative solutions or features considered
● Additional context for understanding the request

Test Request ● OpenMP directive or clause the test applies to
● Details from the OpenMP specification that are being tested,

especially those that are not obvious
● Pseudocode for an ideal code structure

https://gcc.gnu.org/bugzilla
mailto:bugs-admin@lists.llvm.org

APPENDIX A: Interview

This handbook was prepared with the assistance of an interview with Jose Monsalve Diaz, a PhD
student at UD and the primary developer of the OMPVV test suite. During our interview, I asked
Jose what parts of the documentation needed the most attention, and where I could expand into new
subjects not already covered by the documentation. Unfortunately, while his suggestions were
excellent, I could not include many of them as they would extend the page count too far for this
assignment. However, one suggestion in particular I did spend some time working on: the
documentation for creating a new system.def file and editing the make.def file. At Jose’s suggestion I
spent additional time documenting the procedure for editing these files and the meaning of the
variables in them. These steps are crucial to getting a new system set up with the test suite, but they
are not very intuitive, so I believe it will be of great benefit to the OMPVV test suite that this
handbook details those procedures.

Some of Jose’s other suggestions included:

● Instructions on how to extend the infrastructure (add new macros for the header file, adjust
the log file scripts)

● Steps to build the GCC and Clang compilers with offload support
● Improving the Makefile examples to be more comprehensive
● Adding a table of compiler flags for offloading

I also interviewed four AMD employees who regularly use the test suite to get their general feedback
on the documentation and other aspects of the test suite. Their names are Damon McDougall, Greg
Rodgers, Ron Lieberman, and Ethan Stewart. Our discussion was wide-ranging, and included
speculation and feedback about some topics outside the scope of this report, but here are some
relevant points they raised:

● Adding instructions on how to build offloading compilers is likely not worth my time, since it
is a very involved process and the compiler vendors will already have their own
documentation for those tasks

● On the other hand, it would be useful to have a table of flags needed for each compiler to use
offloading (see Jose’s suggestion

● In the future, a convenient “dashboard” of results on the web page would be useful\
● The report_online feature can’t be used by some vendors because results cannot be uploaded

to unsecure web servers

28

APPENDIX B: Changes from previous versions

Changes from version 1.0 to version 1.1

● Corrected Figure 7 descriptions for the run, compile, all, clean, and tidy rules.

29

WORKS CITED

"-Qoffload IBM Knowledge Center.",
https://www.ibm.com/support/knowledgecenter/SSXVZZ_16.1.0/com.ibm.xlcpp161.lelinu
x.doc/compiler_ref/opt_offload.html​.

"Cray Documentation Portal.",
https://pubs.cray.com/content/S-5212/9.1/cray-compiling-environment-cce-release-overvie
w/cce-91-software-enhancements​.

"Getting Started: SOLLVE OMPVV.",
https://crpl.cis.udel.edu/ompvvsollve/project/gettingstarted/​.

"Intel® C++ Compiler 19.0 for Linux* Release Notes for Intel® Parallel Studio XE 2019.",
https://software.intel.com/content/www/us/en/develop/articles/intel-c-compiler-190-for-lin
ux-release-notes-for-intel-parallel-studio-xe-2019.html​.

"OpenMP 5.0 TARGET with Intel Compilers .",
https://software.intel.com/content/www/us/en/develop/articles/openmp-50-target-with-intel
-compilers.html​.

"OpenMP Support - Clang 11 Documentation.",
https://clang.llvm.org/docs/OpenMPSupport.html#basic-support-for-cuda-devices​.

"Releases - ROCm Developer Tools.",
https://github.com/ROCm-Developer-Tools/aomp/releases​.

30

https://www.ibm.com/support/knowledgecenter/SSXVZZ_16.1.0/com.ibm.xlcpp161.lelinux.doc/compiler_ref/opt_offload.html
https://www.ibm.com/support/knowledgecenter/SSXVZZ_16.1.0/com.ibm.xlcpp161.lelinux.doc/compiler_ref/opt_offload.html
https://pubs.cray.com/content/S-5212/9.1/cray-compiling-environment-cce-release-overview/cce-91-software-enhancements
https://pubs.cray.com/content/S-5212/9.1/cray-compiling-environment-cce-release-overview/cce-91-software-enhancements
https://crpl.cis.udel.edu/ompvvsollve/project/gettingstarted/
https://software.intel.com/content/www/us/en/develop/articles/intel-c-compiler-190-for-linux-release-notes-for-intel-parallel-studio-xe-2019.html
https://software.intel.com/content/www/us/en/develop/articles/intel-c-compiler-190-for-linux-release-notes-for-intel-parallel-studio-xe-2019.html
https://software.intel.com/content/www/us/en/develop/articles/openmp-50-target-with-intel-compilers.html
https://software.intel.com/content/www/us/en/develop/articles/openmp-50-target-with-intel-compilers.html
https://clang.llvm.org/docs/OpenMPSupport.html#basic-support-for-cuda-devices
https://github.com/ROCm-Developer-Tools/aomp/releases

