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With the evolution of HPC computer systems architectures
there are two trends that are evident:
1) The increased parallelism
2) The evolution of heterogenous execution environments

(e.g. GPGPUs, AI accelerators and others)

OpenMP ARB and implementations work hard to meet the demand
of application programmers. OpenMP has constantly evolved to
adapt to new HPC systems, allowing programmers to define diverse
parallel structures, and programs executing on heterogenous
systems. However, this has led to an increased complexity and an
increased length of the specifications. Therefore, there’s more
opportunities for mistakes which can occur at different levels of this
complex ecosystem,

Evolution of Computer systems and OpenMP

Testing design, methodology and infrastructure

Software Infrastructure Our Website

The OpenMP specifications are a contract between compiler
implementers, application developers, and system designers.
However, there is a need to assess the quality of an implementation,
running on a given system, to serve as a guarantee for the user that
the specification is respected. Our team develops tests using a
carefully designed methodology that is compiler independent, and
which accounts for possible errors in the specification (interpretation
and description) as well as possible errors in the implementations. Our
tests are open to the community for use and possible re-evaluation.
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OUR PROJECT HAS MOVED TO GITHUB! IF YOU 
ARE A USER OF OUR TEST SUITE PLEASE 

UPGRADE YOUR UPSTREAM LINKS!

For More Information visit:
https://crpl.cis.udel.edu/ompvvsollve/

Our major focus for testing is offloading features, as they are critical to current
ECP applications and systems, as well as the future of OpenMP. We currently have
out of the box support for GNU GCC, IBM’s XL, Clang/LLVM, and CCE compilers,
and we are working on including other vendors. However, users can leverage our
software by creating their own SYSTEM files, which could allow using custom
compilers and infrastructures.

Our tests report their results through
command line, to JSON files or by
creating an HTML interactive results
sheet.

> git clone https://github.com/SOLLVE/sollve_vv.git
> cd sollve_vv
> make # For help
> make CC=gcc CXX=g++ \

LOG_ALL=1 VERBOSE=1 VERBOSE_TESTS=1 all
> make report_html
> # Open results_report/results.html
> # on your favorite browser

How to start?


