
0
2
4
6
8
10
12
14
16
18
20

0

20

40

60

80

100

120

Y1999 L1

Y2000 L1

Y2001 L1

Y2002 L1

Y2003 L1

Y2004 L2

Y2005 L1

Y2006 L1

Y2007 L1

Y2008 L1

Y2009 L1

Y2010 L1

Y2011 L1

Y2012 L1

Y2013 L1

Y2014 L1

Y2015 L1

Y2016 L1

Y2017 L1

Y2018 L1 W
ei

gh
te

d 
av

g 
co

re
s p

er
 so

ck
et

N
um

be
r o

f s
ys

te
m

s

Systems evolution in the Top 500 list

Total Num systems NVIDIA Intel Other AMD Avg Num of cores per socket

An implementation independent Validation 
and Verification Test Suite for OpenMP
Jose M Monsalve Diaz*, Joshua Davis*, Swaroop Pophale☨, Oscar Hernandez ☨, 

David E. Bernholdt ☨, Sunita Chandrasekaran*

☨Oak Ridge National Laboratory *University of Delaware

0

200

400

600

800

1.0 2.0 2.5 3.0 3.1 4.0 4.5 5.0
SPECIFICATION VERSION

Number of Pages per PDF

0

20

40

60

1.0 2.0 2.5 3.0 3.1 4.0 4.5 5.0
SPECIFICATION VERSION

Number of Constructs and 
Directives

0

20

40

60

80

1.0 2.0 2.5 3.0 3.1 4.0 4.5 5.0
SPECIFICATION VERSION

Number of API Functions

0

10

20

30

1.0 2.0 2.5 3.0 3.1 4.0 4.5 5.0
SPECIFICATION VERSION

Number of Environment 
Variables

Analyze OpenMP 
directives OR ECP 

Application
Formulate test

Discuss validity 
and adherence to 

specification

Is test 
valid?

NO

YES

Test with available 
implementations

Test 
passes?

Open for 
community 

review
NO

YES

Implementation 
Bug

report to vendor 

New Test Added 
to the V&V suite

Test 
accepted?

YES

Specification issue
Bring to OpenMP 

ARB discussion

NO

Why?

OpenMP 1.0

OpenMP 2.0

OpenMP 2.0

OpenMP 2.5

OpenMP 3.0

OpenMP 3.1

OpenMP 4.0

OpenMP 4.5

OpenMP 5.0

Parallel regions Tasking Device offloading / SIMD

With the evolution of HPC computer systems architectures
there are two trends that are evident:
1) The increased parallelism
2) The evolution of heterogenous execution environments

(e.g. GPGPUs, AI accelerators and others)

OpenMP ARB and implementations work hard to meet the demand
of application programmers. OpenMP has constantly evolved to
adapt to new HPC systems, allowing programmers to define diverse
parallel structures, and programs executing on heterogenous
systems. However, this has led to an increased complexity and an
increased length of the specifications. Therefore, there’s more
opportunities for mistakes which can occur at different levels of this
complex ecosystem,

Evolution of Computer systems and OpenMP

Testing design, methodology and infrastructure

Software Infrastructure Our Website

The OpenMP specifications are a contract between compiler
implementers, application developers, and system designers.
However, there is a need to assess the quality of an implementation,
running on a given system, to serve as a guarantee for the user that
the specification is respected. Our team develops tests using a
carefully designed methodology that is compiler independent, and
which accounts for possible errors in the specification (interpretation
and description) as well as possible errors in the implementations. Our
tests are open to the community for use and possible re-evaluation.

OMP 
Specifications

Compiler 
implementer

OpenMP User

Running system

Uses specs as guide 
for programming

Uses vendor’s 
compiler to support 
programming model

Uses system as 
programming platform

Uses specs as guide 
for implementation

OUR PROJECT HAS MOVED TO GITHUB! IF YOU 
ARE A USER OF OUR TEST SUITE PLEASE 

UPGRADE YOUR UPSTREAM LINKS!

For More Information visit:
https://crpl.cis.udel.edu/ompvvsollve/

Our major focus for testing is offloading features, as they are critical to current
ECP applications and systems, as well as the future of OpenMP. We currently have
out of the box support for GNU GCC, IBM’s XL, Clang/LLVM, and CCE compilers,
and we are working on including other vendors. However, users can leverage our
software by creating their own SYSTEM files, which could allow using custom
compilers and infrastructures.

Our tests report their results through
command line, to JSON files or by
creating an HTML interactive results
sheet.

> git clone https://github.com/SOLLVE/sollve_vv.git
> cd sollve_vv
> make # For help
> make CC=gcc CXX=g++ \

LOG_ALL=1 VERBOSE=1 VERBOSE_TESTS=1 all
> make report_html
> # Open results_report/results.html
> # on your favorite browser

How to start?


