
ABSTRACT
Scaling OpenMP with LLVM for Exascale performance and portability (SOLLVE)

aims to scale OpenMP by leveraging LLVM for exascale performance and

portability of applications. A Verification & Validation (V&V) testsuite tests various

OpenMP directives to evaluate system & vendor compliance. The V&V suite is ran

on various systems, including NERSC’s Perlmutter system & Oak Ridge National

Laboratory’s Summit & Crusher systems.

BACKGROUND INFO
OpenMP, a parallel-based programming model, allows for performance

optimization in C, C++ & Fortran, with its features called “directives” listed in the

OpenMP specification (spec). The purposes of the SOLLVE Verification and

Validation (V&V) testsuite are to:

• Evaluate compiler’s compliance with the specification

• Identify ambiguities in the specification

• Illustrate a system’s ability to run OpenMP directives & utilize offloading

parallel directives on GPUs

• Demonstrate the use & purpose of new OpenMP directives to application

developers

OpenMP is useful for many application developers working on HPC systems to

ensure their code is running at maximum efficiency. Our testsuite ensures that the

OpenMP specification, compiler vendors & system operators are implementing

OpenMP effectively.

APPROACH
• Tests are usually written to ensure the test would fail if the directive were to

not work properly.

• If the test fails, analysis is done to determine the issue:

• The test was written improperly

• The directive has not yet been implemented

• The specification is too ambiguous

• If the test passes, it is merged into the repository.

• Results for each system & compiler are then uploaded to the website.

TEST EXAMPLE

Figure 1: test_masked.c code segment

This test, which focuses on the omp masked directive which only runs on the
master thread, demonstrates:
• OMPVV_TEST_AND_SET_VERBOSE function, which is part of the V&V suite

and is a primary tool in reporting errors for test results
• Errors reported if the running thread is not the master (first) thread
• Errors reported if masked code segment does not run 10 times

RESULTS ON PERLMUTTER, SUMMIT & CRUSHER

Figure 2: Results for GCC, Clang, NVC & Cray on NERSC’s Perlmutter system.

Figure 2 shows GCC & Clang perform best on Perlmutter, while NVC performs
the worst, with more failing tests than passing. This is interesting, as the NVHPC
compiler performs much better on other systems, such as Summit (Figure 3). It
is important to note that LLVM’s Clang does not include a fortran compiler.

Figure 3: Results for various Gnu’s GCC, LLVM’s Clang & Nvidia’s NVHPC
compiler versions on the ORNL Summit system.

Figure 3 shows GCC performing the best on the Summit system. Compared to
Perlmutter, GCC has over 100 more passing tests on the system, despite it using
a slightly downgraded version of the compiler. In contrast to perlmutter, LLVM’s
clang compiler performs the worst on Summit.

Figure 4: Results for ROCm compiler & Cray CCE compiler on ORNL’s Crusher
system.

Figure 4 shows results on Crusher, which is a pre-exascale system, performs
quite well with both CCE & ROCm compiler. Compared to Perlmutter, the
best-performing run on Crusher has around 50 more passing tests. It is
interesting to note that previous versions of CCE, such as version 13.0.0, cannot
run OpenMP code as it requires dependencies from both ROCm 5 & ROCm 4.

CONCLUSIONS
● In total, we have so far written 289 C, 26 C++ and, 172 Fortran tests

● The V&V suite targets up to OpenMP 5.2 specification

● The suite runs on pre-exascale systems (spock, crusher), Perlmutter

and Argonne JLSE test beds

Figure 5: Pie charts showing percentage of testsuite’s implementation of
directives marked as “Medium” priority or higher by Application

Developers at Oak Ridge National Laboratory.

Figure 6: Table displaying “medium” or higher priority tests implemented
by GCC 12.1.1, NVHPC 22.5 & LLVM 16.

Figure 5 shows that our suite has implemented the majority of 5.0 & 5.1
features of high priority. Figure 6 illustrates that GCC has by far
implemented more key features in OMP 5.1 compared to NVHPC &
LLVM.

FUTURE WORK
● Working on new tests for the latest OpenMP specification (5.2)

● Expand our Fortran tests so that more C/C++ tests have Fortran

counterparts

● Running/Testing the suite on more machines to further test the

specification

CALLS TO ACTION
GitHub V&V repository (https://github.com/SOLLVE/sollve_vv) is open

for download, logging issues, suggesting tests, etc.

Scan QR code to see results!

ACKNOWLEDGEMENTS
Thanks to OLCF: This research used resources of the Oak Ridge Leadership Computing

Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of

the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Thanks to ECP: This research was supported by the Exascale Computing Project

(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and

the National Nuclear Security Administration.

Thanks to NERSC: This researched used resources of the National Energy Research Scientific

Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility

located at Lawrence Berkeley National Laboratory, operated under Contract No.

DE-AC02-05CH11231

ECP SOLLVE Validation and Verification OpenMP Offloading Testsuite
Thomas Huber1, Swaroop Pophale3, Nolan Baker1, Nikhil Rao1, Michael Carr1, Jaydon Reap1, Kristina Holsapple1, Joshua Hoke Davis4, Tobias Burnus5, Seyong Lee3, David E. Bernholdt3, Sunita Chandrasekaran1, 2

1University of Delaware, 2 Brookhaven National Laboratory, 3Oak Ridge National Laboratory, 4University of Maryland, 5Siemens Electronic Design Automation

#pragma omp parallel num_threads(threads)
while(1){
 int tot;
 #pragma omp atomic read
 tot = total;
 if (tot <= 0)
 break;
 #pragma omp masked
 {
 OMPVV_TEST_AND_SET_VERBOSE(errors, omp_get_thread_num() !=
0); // primary thread
 ct++;
 #pragma omp atomic
 total = total-1;
 }
}
 OMPVV_TEST_AND_SET_VERBOSE(errors, ct != 10);

Compilers

COVERED: allocate, declare mapper,
declare target, declare variant,
requires, metadirective, target, target
data, target teams distribute, target
teams distribute parallel for, target
update, task, teams, for, simd, loop,
scan, atomic, depobj, taskgroup,
taskloop, taskwait, master

NOT COVERED: some clauses

V&V OpenMP 5.0 Coverage by
Application Priority

COVERED: atomic compare, map present,
motion present, defaultmap present,
has_device_addr, begin/end declare variant,
omp_get_mapped_ptr,
target_memcpy_async,
target_memcpy_rect_async,
order[reproducible/unconstrained],
OMP_NUM_TEAMS env var,
OMP_TEAMS_THREAD_LIMIT env vars,
nothing, taskwait nowait

NOT COVERED: atomic fail

V&V OpenMP 5.1 Coverage by Application
Priority

Crusher Compiler by Version Results

Summit Results

https://github.com/SOLLVE/sollve_vv

