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Problem

● The OpenMP specification is rapidly expanding

● Need offloading features to make use of accelerator devices

● OpenMP depends on compilers to implement its features, so new features 
are only usable once a compiler supports it

● Users follow the specification to learn usage, not implementation details
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OpenMP 4.5 Data Environments
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“Evaluating Support for OpenMP Offload Features,” Jose Monsalve Diaz



OpenMP 4.5 Execution Model
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“Evaluating Support for OpenMP Offload Features,” Jose Monsalve Diaz



#pragma omp target teams distribute map(tofrom: a[0:1024])
for (int i = 0; i < 1024; ++i) {

A[i] *= A[i];
} 

target teams distribute construct
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#pragma omp target teams distribute map(tofrom: a[0:1024])
for (int i = 0; i < 1024; ++i) {

A[i] *= A[i];
} 

Target teams distribute construct
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Target: map variables to device and execute construct on the device



#pragma omp target teams distribute map(tofrom: a[0:1024])
for (int i = 0; i < 1024; ++i) {

A[i] *= A[i];
} 

Target teams distribute construct
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Teams: create a league of thread teams



#pragma omp target teams distribute map(tofrom: a[0:1024])
for (int i = 0; i < 1024; ++i) {

A[i] *= A[i];
} 

Target teams distribute construct
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Distribute: divide the loop iterations amongst the master threads of each team



#pragma omp target teams distribute map(tofrom: a[0:1024])
for (int i = 0; i < 1024; ++i) {

A[i] *= A[i];
} 

Target teams distribute construct
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Map: specify mapping behavior for a list of variables



Workflow
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https://crpl.cis.udel.edu/ompvvsollve/project/workflow/

https://crpl.cis.udel.edu/ompvvsollve/project/workflow/


State of the Suite
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http://sankeymatic.com/

● 223 individual tests in the suite

● 21 bugs filed with vendors

● All clauses in 4.5 spec are covered for these 
constructs:

○ target
○ target teams distribute
○ target teams distribute parallel for
○ target data
○ target enter/exit data
○ target update

● 4.5 Coverage in progress for:

○ task
○ target simd

http://sankeymatic.com/


Test Environment
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System Summit NERSC Cori (GPU nodes) Fatnode

Model IBM AC922 Cray XC40 Intel Xeon 

Processors (per node) IBM POWER9 x2 Intel Xeon Gold 6148 “Skylake” x2 Intel Xeon E5-2670 x1

Cores (per node) 42 40 8

Threads (per node) 168 80 16

Memory (per node) 512 GB 384 GB 384GB

Accelerator (per node) NVIDIA V100 x6 NVIDIA V100 x8 NVIDIA K40 x 2

Compilers GCC 9.1.0, XLC 16.01, Clang 
8.0.0 CORAL

GCC 8.3.0, CCE 9.1.0 (CDT 19.11), Clang 
10.0.0

GCC 9.0.1, Clang 9.0.1



4.5 Results (as of 13 April 2020)

                 Summit                                                            Cori                                     Fatnode



● Cray

○ Two features: depend on taskwait, OMP_DISPLAY_AFFINITY

● GNU

○ Offers initial OpenMP 5.0 support (C/C++ only)

● Intel

○ Standard C/C++ compiler does not support target

○ Requires separate toolkit, supports intel hardware (integrated graphics only)

● Clang

○ In development: 
https://clang.llvm.org/docs/OpenMPSupport.html#openmp-implementation-details

5.0 Compiler Support 
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https://clang.llvm.org/docs/OpenMPSupport.html#openmp-implementation-details


● Would be most reliable on local systems

○ Timer 

○ Memory reads & writes

○ Heap & cache

Performance Metrics
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● Example: 
https://crpl.cis.udel.edu/ompvvsollve/result_report/results.html?result_report
=a189efb91

● Adding plots

○ Speed stats

○ Memory stats

● Adding warning information

○ Test may pass, but provide warnings such as “Offloading is not 
enabled, test may no longer be valid if not targeting a device”.

Improving the visual report
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https://crpl.cis.udel.edu/ompvvsollve/result_report/results.html?result_report=a189efb91
https://crpl.cis.udel.edu/ompvvsollve/result_report/results.html?result_report=a189efb91


Continuous Integration
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● Ensure testsuite remains stable

● Confirm there are no issues 
with compilers (is this relevant?)

● Not possible with Summit



● Device Discovery

○ Make the suite more device-friendly

○ Remove headache of setting up new system (.def)

● Improve test coverage for C++

○ Possibly split the header file into a C and C++ version

Other Changes
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Obtaining and Running the Suite
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● First, clone the repo: https://github.com/SOLLVE/sollve_vv

● Set up <system>.def file and make.def according to your system

● Compile and run tests (after obtaining interactive job): 

Specify compilers Enable logs Enable module loading, .def file, scheduler integration

make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1 MODULE_LOAD=1 SYSTEM=<system> ADD_BATCH_SCHED=1 
VERBOSE=1 VERBOSE_TESTS=1 SOURCES=* all

Verbose output Set sources

https://github.com/SOLLVE/sollve_vv


Reporting Results
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● When LOG=1 is provided, make will create a log folder with logs of test results

● Several recipes to view results:

○ make report_summary will give a short in-console overview of results

○ make report_json and make report_csv will give formatted data useful for 
post-processing

○ make report_html gives a user-friendly formatted page of results

○ New/beta feature:  make report_online will upload the html report to the CRPL 
server so it can be easily viewed after running with the generated link!

■ Ex: 
https://crpl.cis.udel.edu/ompvvsollve/result_report/results.html?result_report=a189
efb91

https://crpl.cis.udel.edu/ompvvsollve/result_report/results.html?result_report=a189efb91
https://crpl.cis.udel.edu/ompvvsollve/result_report/results.html?result_report=a189efb91


Conclusions

● Knowing that support for many 5.0 features is unavailable, we must be 
cautious when interpreting the specification and writing tests which may not 
be immediately testable.

● Beyond expanding the suite and improving features for usage, new 
directions include possible performance measurement

● The V&V suite is now being used for regression tests in Cray, Intel, and 
AMD’s development

● Website: https://crpl.cis.udel.edu/ompvvsollve/
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