
OpenMP Offloading Verification and
Validation: Workflow and Road to 5.0

Thomas Huber & Joshua Davis (UD)
Jose Monsalve Diaz (UD)
Swaroop Pophale (ORNL)

Sunita Chandrasekaran (UD)1

Kyle Friedline (UD)
Oscar Hernandez (ORNL)
David E. Bernholdt (ORNL)

1schandra@udel.edu
https://github.com/SOLLVE/sollve_vv — Presented 14 April 2020

mailto:schandra@udel.edu
https://github.com/SOLLVE/sollve_vv

Outline
● Problem and motivation

● Current status of the test suite

● Next steps for 5.0 and new directions

○ Performance measurement

○ Continuous integration

○ Hardware detection

● Quick guide of running the test suite on a system and reporting results

● Conclusions

2

Problem

● The OpenMP specification is rapidly expanding

● Need offloading features to make use of accelerator devices

● OpenMP depends on compilers to implement its features, so new features
are only usable once a compiler supports it

● Users follow the specification to learn usage, not implementation details

3

OpenMP 4.5 Data Environments

4

“Evaluating Support for OpenMP Offload Features,” Jose Monsalve Diaz

OpenMP 4.5 Execution Model

5

“Evaluating Support for OpenMP Offload Features,” Jose Monsalve Diaz

#pragma omp target teams distribute map(tofrom: a[0:1024])
for (int i = 0; i < 1024; ++i) {

A[i] *= A[i];
}

target teams distribute construct

6

#pragma omp target teams distribute map(tofrom: a[0:1024])
for (int i = 0; i < 1024; ++i) {

A[i] *= A[i];
}

Target teams distribute construct

7

Target: map variables to device and execute construct on the device

#pragma omp target teams distribute map(tofrom: a[0:1024])
for (int i = 0; i < 1024; ++i) {

A[i] *= A[i];
}

Target teams distribute construct

8

Teams: create a league of thread teams

#pragma omp target teams distribute map(tofrom: a[0:1024])
for (int i = 0; i < 1024; ++i) {

A[i] *= A[i];
}

Target teams distribute construct

9

Distribute: divide the loop iterations amongst the master threads of each team

#pragma omp target teams distribute map(tofrom: a[0:1024])
for (int i = 0; i < 1024; ++i) {

A[i] *= A[i];
}

Target teams distribute construct

10

Map: specify mapping behavior for a list of variables

Workflow

11

https://crpl.cis.udel.edu/ompvvsollve/project/workflow/

https://crpl.cis.udel.edu/ompvvsollve/project/workflow/

State of the Suite

12

http://sankeymatic.com/

● 223 individual tests in the suite

● 21 bugs filed with vendors

● All clauses in 4.5 spec are covered for these
constructs:

○ target
○ target teams distribute
○ target teams distribute parallel for
○ target data
○ target enter/exit data
○ target update

● 4.5 Coverage in progress for:

○ task
○ target simd

http://sankeymatic.com/

Test Environment

13

System Summit NERSC Cori (GPU nodes) Fatnode

Model IBM AC922 Cray XC40 Intel Xeon

Processors (per node) IBM POWER9 x2 Intel Xeon Gold 6148 “Skylake” x2 Intel Xeon E5-2670 x1

Cores (per node) 42 40 8

Threads (per node) 168 80 16

Memory (per node) 512 GB 384 GB 384GB

Accelerator (per node) NVIDIA V100 x6 NVIDIA V100 x8 NVIDIA K40 x 2

Compilers GCC 9.1.0, XLC 16.01, Clang
8.0.0 CORAL

GCC 8.3.0, CCE 9.1.0 (CDT 19.11), Clang
10.0.0

GCC 9.0.1, Clang 9.0.1

4.5 Results (as of 13 April 2020)

 Summit Cori Fatnode

● Cray

○ Two features: depend on taskwait, OMP_DISPLAY_AFFINITY

● GNU

○ Offers initial OpenMP 5.0 support (C/C++ only)

● Intel

○ Standard C/C++ compiler does not support target

○ Requires separate toolkit, supports intel hardware (integrated graphics only)

● Clang

○ In development:
https://clang.llvm.org/docs/OpenMPSupport.html#openmp-implementation-details

5.0 Compiler Support

15

https://clang.llvm.org/docs/OpenMPSupport.html#openmp-implementation-details

● Would be most reliable on local systems

○ Timer

○ Memory reads & writes

○ Heap & cache

Performance Metrics

16

● Example:
https://crpl.cis.udel.edu/ompvvsollve/result_report/results.html?result_report
=a189efb91

● Adding plots

○ Speed stats

○ Memory stats

● Adding warning information

○ Test may pass, but provide warnings such as “Offloading is not
enabled, test may no longer be valid if not targeting a device”.

Improving the visual report

17

https://crpl.cis.udel.edu/ompvvsollve/result_report/results.html?result_report=a189efb91
https://crpl.cis.udel.edu/ompvvsollve/result_report/results.html?result_report=a189efb91

Continuous Integration

18

● Ensure testsuite remains stable

● Confirm there are no issues
with compilers (is this relevant?)

● Not possible with Summit

● Device Discovery

○ Make the suite more device-friendly

○ Remove headache of setting up new system (.def)

● Improve test coverage for C++

○ Possibly split the header file into a C and C++ version

Other Changes

19

Obtaining and Running the Suite

20

● First, clone the repo: https://github.com/SOLLVE/sollve_vv

● Set up <system>.def file and make.def according to your system

● Compile and run tests (after obtaining interactive job):

Specify compilers Enable logs Enable module loading, .def file, scheduler integration

make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1 MODULE_LOAD=1 SYSTEM=<system> ADD_BATCH_SCHED=1
VERBOSE=1 VERBOSE_TESTS=1 SOURCES=* all

Verbose output Set sources

https://github.com/SOLLVE/sollve_vv

Reporting Results

21

● When LOG=1 is provided, make will create a log folder with logs of test results

● Several recipes to view results:

○ make report_summary will give a short in-console overview of results

○ make report_json and make report_csv will give formatted data useful for
post-processing

○ make report_html gives a user-friendly formatted page of results

○ New/beta feature: make report_online will upload the html report to the CRPL
server so it can be easily viewed after running with the generated link!

■ Ex:
https://crpl.cis.udel.edu/ompvvsollve/result_report/results.html?result_report=a189
efb91

https://crpl.cis.udel.edu/ompvvsollve/result_report/results.html?result_report=a189efb91
https://crpl.cis.udel.edu/ompvvsollve/result_report/results.html?result_report=a189efb91

Conclusions

● Knowing that support for many 5.0 features is unavailable, we must be
cautious when interpreting the specification and writing tests which may not
be immediately testable.

● Beyond expanding the suite and improving features for usage, new
directions include possible performance measurement

● The V&V suite is now being used for regression tests in Cray, Intel, and
AMD’s development

● Website: https://crpl.cis.udel.edu/ompvvsollve/

22

https://crpl.cis.udel.edu/ompvvsollve/

