
PR
EP

RIN
T

Analysis of OpenMP 4.5 Offloading in Implementations: Correctness and Overhead

Jose Monsalve Diaza, Kyle Friedlinea, Swaroop Pophaleb, Oscar Hernandezb, David E. Bernholdtb, Sunita Chandrasekarana

aUniversity of Delaware, 18 Amstel Avenue, Newark, Delaware 19716
bOak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831

Abstract

The OpenMP language features have been evolving to meet the rapid development in hardware platforms. This journal focuses on
evaluating implementations of OpenMP 4.5 target offload features in compilers such as Clang, XL and GCC that are an integral
part of the software harness on supercomputers and clusters. We use Summit (Top supercomputer in the world as of November
2018) as one of our experimental setup. Such an effort is particularly critical on such supercomputers as that is being widely used by
application developers to run their scientific codes at scale. Our tests not only evaluate the OpenMP implementations but also expose
ambiguities within the OpenMP 4.5 specification. We also assess the overhead of the different OpenMP runtimes in relationship
to the different directives and clauses. This helps in assessing the interaction of different OpenMP directives independent of other
application artifacts. We are aware that the implementations are constantly evolving and Summit is advertised as having only
partial OpenMP 4.x support. This is a synergistic effort to help identify and fix bugs in features’ implementations that are required
by applications and prevent deployment delays later on. Going forward, we also plan to interact with standard benchmarking
organizations like SPEC/HPG to donate our tests and mini-apps/kernels for potential inclusion in the next release versions of SPEC
benchmark suite.

Keywords: OpenMP 4.5, Offloading, Overhead Measurement

1. Introduction

Top500 highlights mention that a total of 137 systems on the
latest list use accelerator/co-processor technology up from 110
six months ago, of which sixty-four of them use NVIDIA
Pascal, forty-six use NVIDIA Volta, thirteen systems that use
NVIDIA Kepler, and four systems use Intel Xeon Phi co-
processors [1]. The trend towards heterogeneous architec-
ture (CPUs+Accelerator devices) only seems to be strength-
ening with more systems using different types of cores with
each year. One key advantage of heterogeneous systems is the
performance per watt contributed by accelerators in compari-
son to the traditional homogeneous CPU-based systems. These
heterogeneous architectures offer tremendous potential with re-
spect to performance gains, but attaining that potential requires
scientific applications of thousands or even millions of lines of
code to be migrated to support these architectures. Without ap-

IThis manuscript has been authored by UT-Battelle, LLC, under contract
DE-AC05-00OR22725 with the US Department of Energy (DOE). The US
government retains and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up, irrevo-
cable, worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for US government purposes. DOE will
provide public access to these results of federally sponsored research in ac-
cordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).
∗Jose Monsalve Diaz
Email addresses: josem@udel.edu (Jose Monsalve Diaz),

utimatu@udel.edu (Kyle Friedline), pophaless@ornl.gov (Swaroop
Pophale), oscar@ornl.gov (Oscar Hernandez), bernholdtde@ornl.gov
(David E. Bernholdt), schandra@udel.edu (Sunita Chandrasekaran)

propriate support in performance-portable programming mod-
els that can exploit the rich feature sets of hardware resources,
this already daunting task would be prohibitively difficult.

We need programming paradigms and tools to abstract the
hardware differences across different platforms and provide re-
producible and identical behavior for applications without bur-
dening the scientific application developers to learn about the
programming paradigms or intricacies of the hardware. One of
the feasible and widely-adopted solutions to this challenge is
using a directive-based programming model that allows pro-
grammers to insert hints into a given region of code for the
compiler to automatically generate parallel code for the tar-
get system. Currently, the two popular directive-based pro-
gramming models are OpenMP [2] and OpenACC [3]. Besides
directive-based approaches, other techniques to program accel-
erators include CUDA [4], OpenCL [5], NVIDIA Thrust [6],
and Kokkos [7].

OpenMP made a paradigm change to support heterogeneous
systems and released specification versions 4.0, 4.5 and 5.0 in
2013, 2015, and 2018 respectively. New features include di-
rectives such as simd and target, additions to the task direc-
tive, such as the taskloop, taskloop simd, and taskgroup

constructs and clauses for tasks such as priority and depend.
Environment variables included hardware thread affinity descrip-
tion, affinity policies, default accelerator devices while runtime
library routines included omp get initial device, and other
device memory routines. Technical reports have been augment-
ing recent releases of OpenMP with language features to man-
age memory on systems with heterogeneous memories, with

Preprint submitted to Journal of Parallel Computing September 24, 2019

PR
EP

RIN
T

features for task reductions, extensions to the target construct
along with several clarifications and fixes. Some of these, in-
cluded in OpenMP 5.0, include full support for accelerator de-
vices, tool interfaces to allow third party tools development,
better support for C++ data-types, enhancements to the loop
construct, and memory allocation to support multilevel mem-
ory systems [8].

OpenMP 4.5 and above allows programmers to use the same
standard to program CPU, SIMD units, and accelerators such
as GPUs. Applications such as Pseudo-Spectral Direct Nu-
merical Simulation-Combined Compact Difference (PSDNS-
CCD3D) [9, 10], a computational fluid dynamics code on tur-
bulent flow simulation rely on OpenMP 4.5 for on-node par-
allelism and run to scale on the Titan super-computer. Other
applications that have used OpenMP 4.5 include Quick-silver,
a Monte Carlo Transport code [11].

Compiler support for OpenMP 4.5 has increased in the re-
cent years [12]. GCC versions 7.1 (May 2017) and up provide
support for OpenMP 4.5 in C and C++, the most recent ver-
sion GCC 9.1 has started integrating infrastructure for AMD
accelerators. IBM XL (Dec 2016), in little endian Linux dis-
tributions, supports OpenMP 4.5 in C and C++ since V13.1.5,
and some of the offloading features in Fortran since V15.1.15.
Intel ICC 17.0, 18.0 and 19.0 compilers support OpenMP 4.5
for C, C++ and Fortran. For Cray systems the Cray Compil-
ing Environment (CCE) 8.7 (April 2018) supports OpenMP 4.0
along with OpenMP 4.5 support for device constructs, Finally,
LLVM Clang 3.8 released support for all non-offloading fea-
tures of OpenMP 4.5, while version 7.0.0 introduces support
for OpenMP 4.5 offloading to NVIDIA GPUs. A version of
Clang that supports OpenMP 5.0 features as well as a Fortran
front end for LLVM with OpenMP support, are currently under
development.

As OpenMP’s feature set continues to evolve, it is critical to
ensure that their implementations conform to the specification.
Maintaining consistency with the definition in the specification
is a challenge as the description in the specification can often
be interpreted in different ways. Due to such ambiguities, dif-
ferent compiler developers tend to interpret such descriptions
differently and hence we find a particular feature implemented
differently across different compilers. Sometimes these differ-
ences are quite subtle but trigger a productive discussion to fix
the description in the specification.

For example, let us consider the usage and restrictions of the
OpenMP’s combined constructs. If one was using the target

teams combined directive and wanted to map data to the device
and then get a initialized copy of a data item from the master
thread (firstprivatize), the map clause would only apply to the
target directive and the firstprivate would only apply to
the teams directive. Since the combined construct is seman-
tically the same as writing each directives closely nested, one
might expect for the code to execute properly. However, with
a closer reading the map clause can only appear on a target,
target data, target enter data, and target exit data.
In each case, no data sharing attributes can be used on the di-
rective. Hence, from reading the OpenMP specification alone
it is not clear what combination of clauses are not permissible.

Such ambiguities in specifications do not help the users (other-
wise called as application developers) or the vendors (otherwise
called as compiler developers). Our previous publications have
captured more such discrepancies [13, 14].

While correctness and specification compliance in OpenMP
implementations are critical, there are other aspects that users
will consider for assessing quality of an implementation. Out
of many, two important aspects are 1) quality of code genera-
tion, which has a direct impact in the application performance,
and 2) quality of the OpenMP runtime system which should be
transparent to the user and provide a low overhead to the fi-
nal execution time. Although the former aspect is outside of
the scope of this work, we have developed a methodology to
evaluate the latter. Our approach is to measure the overhead
introduced by the runtime when using the different OpenMP
directives and clauses. By using NVIDIA’s CUDA Profiling
Tools Interface (CUPTI) [15], we are able to distinguish de-
vice runtime execution time and kernel execution time, from
the OpenMP runtime execution time. We also evaluate the ef-
fect that number of threads and number of teams has over the
measured overhead.
While runtime overhead may not necessarily have a direct im-
pact in the overall performance of the application, studying it is
important as it allows users (or applications) to understand the
costs of using OpenMP offloading to acceleration devices. Ad-
ditionally, these numbers directly relate to the complexity that
the underlying runtime requires to support OpenMP offloading,
as well as the runtime scaling across the threads and teams when
mapped to the device. Furthermore, it provide users with addi-
tional insights to analyze the observed differences in the appli-
cation behavior across implementations.

This journal is an extension of our recently published pa-
per [16]. Of the four major features introduced in the OpenMP
4.5, offloading is by far the most challenging concept, both from
compiler and application developers’ standpoints. Hence we
primarily focus on the OpenMP’s offloading directives in this
paper. Till date (submission of this journal) we have covered
60% of the offload directives. We do not count simd direc-
tives as they are impossible to verify without looking at the
code that’s generated. In this journal, we showcase results on
IBM Power 9 architecture (Summit) along with results on X86
architecture. We also discuss overhead associated to different
directives and different implementations prevalent on different
platforms that we have access to. Studies on overhead find-
ings for combined constructs were a particularly interesting as-
pect of the OpenMP implementations as this could potentially
change the code generation in comparison to their nested ver-
sions. Also, we report findings on how the OpenMP compilers
use CUDA drivers and CUDA runtime APIs through execution
traces.

The following are the main contributions of this journal:

• Identify the extent of OpenMP 4.5 offload support in avail-
able OpenMP 4.5 implementations such as GCC, Clang,
XL and Cray CCE while identifying and reporting incon-
sistencies or bugs in specific compiler implementations.

• Evaluate the available OpenMP 4.5 compiler implemen-

2

PR
EP

RIN
T

tations on ORNL Summit besides 3 other systems.

• Define and use a testing methodology to evaluate over-
head of directives across different OpenMP 4.5 imple-
mentations.

• Report studies of how the OpenMP compilers use CUDA
driver and CUDA runtime APIs via execution traces.

• Evaluate changes in runtime overhead while using com-
bined constructs vs. nested constructs, as well as the ef-
fect of changing the number of teams/threads on the over-
head.

The remainder of the paper is organized as follows: Sec-
tion 2 summarizes related efforts in this area of work. Section 3
discusses the concepts of offloading directives in OpenMP 4.5.
In Section 4.1 we describe our experimental setup and in Sec-
tion 4.2 we describe our feature tests used to assess the extent
of support for offloading features in different compilers such as
Clang, XL, GCC and Cray. In Section 5 we analyze the over-
heads of the standalone and combined constructs directives pre-
senting our findings and analysis. In Section 6 we summarize
our findings and discuss next steps.

2. Related work

Related efforts include work that discusses the status of imple-
mentations of OpenMP 3.1 features and OpenACC 2.5 features
with different compilers [17, 18]. Such work has both high-
lighted ambiguities in the specifications and reported compiler
bugs thus enabling application developers to be aware of the
statuses of compilers. Similarly [19] validates OpenSHMEM
library API. This work, in addition to feature tests, also pro-
vides micro-benchmarks that can be used to analyze and com-
pare performances of library APIs. This is of special interest
when targeting different OpenSHMEM library implementations
on varying hardware configurations. Work in [14, 20] presents
validations of implementations of OpenMP 2.0 features, which
was further extended and improved in [13] to develop a more
robust OpenMP validation suite and provided up-to-date test
cases covering all the features until OpenMP 3.1. Since 2013,
OpenMP can support heterogeneous platforms and the specifi-
cation was extended with newer features to offload computation
to target platforms.

The parallel testsuite [21] chooses a set of routines to test
the strength of a computer system (compiler, run-time system,
and hardware) in a variety of disciplines with one of the goals
being to compare the ability of different Fortran compilers to
automatically parallelize various loops. The Parallel Loops test
suite is modeled after the Livermore Fortran kernels [22]. Over-
heads due to synchronization, loop scheduling and array opera-
tions are measured for the language constructs used in OpenMP
in [23]. Significant differences between the implementations
are observed, which suggested possible means of improving
future performance. A microbenchmark suite was developed
to measure the overhead of the task construct introduced in the
OpenMP 3.0 standard, and associated task synchronization con-
structs [24].

Other related efforts to building a testsuite include Csmith [25],
a comprehensive, well-cited work where the authors perform
a randomized test-case generator exposing compiler bugs us-
ing differential testing. Such an approach is quite effective to
detecting compiler bugs but does not quite serve our purpose
since it is a challenge to automatically map a randomly gener-
ated failed test to a bug that actually caused it. We do not plan to
apply Csmith concepts to our project just yet as we are dealing
with compiler implementations that are not fully matured and it
requires frequent communications with vendors in terms of re-
porting bugs and reusing next versions of compilers to identify
if the issues are fixed. We also use combined and composite di-
rectives in our tests that need to be tested in order to mark them
as compiler or runtime errors.

LLVM has a testing infrastructure [26] that contains regres-
sion tests and whole programs. The regression tests are ex-
pected to always pass and should be run before every com-
mit. These are a large number of small tests that tests vari-
ous features of LLVM. The whole program tests are referred to
as the LLVM testsuite. The tests itself are driven by lit test-
ing tool, which is part of LLVM. The LLVM testsuite itself
does not contain any OpenMP accelerator tests excepting a very
few tests on offloading and tasking. OpenMP 4.5 feature tests
and reporting is covered in [27]. These test try to comprehen-
sively cover the new directives in OpenMP 4.5 with all combi-
nation of clauses. In [16] we had evaluated the level of sup-
port for 4.5 features in multiple compilers and on a variety of
systems. More specifically the features that we focused on in-
cluded testing target, target data, map, target enter

data, target teams distribute parallel for and target
update and its associated clauses.

The above mentioned references are closely related to the
scope of our current manuscript that is focusing on building
testsuite and measuring overheads. Other types of work in-
clude performance analysis of OpenMP offloading model on
GPUs [28, 29] that narrates the usage of features for real and
proxy applications and their impact on the overall performance
of the scientific applications on heterogeneous systems. The
scope of such work is quite different to ours. While these papers
discuss performance analysis of implementations, our project
focuses on the validation and verification of features agnostic to
specific implementation strategies along with determining over-
head by runtime.

3. Offloading in OpenMP 4.5

A major change introduced in OpenMP 4.0 and improved in 4.5
is offloading computation to devices. This new feature enables
the possibility of executing code in one or multiple co-processor
devices (or accelerators) while at the same time running classi-
cal pre-OpenMP 4.0 parallel code on the multicore processor.
Offloading opens a new world of heterogeneous computation
for application developers, still, it brings signification changes
to the OpenMP execution and memory model. Specifically,
the addition of a new independent execution environment for
each of the offloading devices (e.g. a different memory address
space, memory hierarchy or core’s micro-architecture). Accel-

3

PR
EP

RIN
T

TARGET DEVICE

#omp target

#omp parallel for

#omp simd

#omp teams

#omp distribute

TARGET OFFLOADING

Thread team

#omp target
// target region

 #omp teams
 // distributed between num_teams

 # omp distribute
 for (i:0:N)

 #omp parallel for
 for (j:0:M)

 # omp simd
 for (k:0:L) { … }

Figure 1: OpenMP 4.0+ Execution model.

erators such as GPGPUs and Xeon Phi coprocessors have heav-
ily influenced the OpenMP definitions of execution models and
memory models for offloading. OpenMP 5.0 is the most re-
cently released specification that brings major improvements to
the code offloading features. However, at the time of writing
this paper (June 2019), there are no compilers that provide full
OpenMP 5.0 support. In fact, implementations are still working
towards having completing support for OpenMP 4.5, hence we
focus on OpenMP 4.5 features that are of most importance to
application developers and those that have been implemented
by the majority of the compiler developers.

OpenMP uses a host-centric execution model. The host cor-
responds to the processor that initiates the program execution,
and the device may correspond to the co-processor or an accel-
erator that is used for computing particular segments of code
(kernels) in the program. The host will offload data and com-
putation to one or more target devices using the target direc-
tive, wait for the execution to complete in these devices (pos-
sibly executing other code), and finally move results back to
the host. This could happen many times throughout the pro-
gram. Shared memory environments between accelerators and
host is supported by the OpenMP specifications. In such case
programmer might not need to explicitly move data back and
forth between host and device.

Directives starting with omp target will indicate the re-
gion of code that will be considered for offloading to the ac-
celerator device during runtime. Additionally, the programmer
may define which data is to be copied back and forth, or allo-
cated on the offloading device. The compiler converts these seg-
ments of code to kernel functions in the accelerator’s instruction
set, which can then be executed on the target device architec-
ture. Offloading of code requires the target device to be present
and supported by the compiler. If this is not the case the code
should still run on the host. Hence, a host version of the target
code will still be generated by the compiler. However, as far
as the specification is concerned, there is no fall-back mecha-
nism during runtime. This means that although the code could
still be executed on a host with no target device on it, if the
device is present but becomes unavailable during execution, or
the execution on the device encounters some error, the program
execution behavior will be unspecified.

The execution model of OpenMP 4.0+ continues to use the
fork-join model, as well as the previously introduced tasking
execution model. When the target construct is encountered,

a new target task is created, enclosing all the target region. It
is possible to specify dependencies between host tasks and tar-
get tasks. Moreover, the nowait clause can be used to asyn-
chronously execute target tasks and host tasks or parallel re-
gions. Within the target region the programmer can use the
teams, distribute, parallel for, and simd to express par-
allelism in the fork-join model as depicted in Figure 1. The
target region executes in a single thread. When the teams

construct is encountered, a league of thread teams is created.
The master threads of each team will execute the teams re-
gion. It is important to be aware that there is no implicit barrier
at the end of a the teams region. The other three constructs
distribute, parallel for and simd are loop constructs.
The distribute construct will split the iteration space among
all the league of thread teams. Hence, each master thread of
each team will be statically assigned with a chunk of the
iteration space for execution. The parallel construct allows
parallelism within the thread team. The iteration space is split
between all the threads within a team. Finally, the simd con-
struct allows splitting an iteration space into SIMD lanes, as
long as this is supported by the architecture.

On the host side, in order to support device offloading, a
new device thread exists per physically available device. This
thread is in charge of managing resources for that particular de-
vice, as well as handling communication between the host and
this particular device. When a target region is encountered, the
required data is mapped (read transferred) to the device and the
created target task is scheduled into the selected target device.
The caller thread could either block or continue the execution
depending if the nowait clause is present. Once the accelera-
tor has finished executing the code, the output data is usually
mapped back to the device.

Regarding the device memory model, each target thread
will have its own target data region that keeps track of mem-
ory mapping between host and device. Variables can be present
in the host memory, the device memory or both. Synchroniza-
tion of data, or data movement between the two environments
can be (and should be) managed by the programmer. To do
this, the map construct, together with a map-type-modifier, are
used in the target directive, the target data directive, the
target enter/exit data directives or the target update

directive. The map construct specifies if data should be allo-
cated (alloc modifier), deallocated (delete and release modi-
fiers), or moved (to, from and tofrom modifiers) between host
and device. If no modifiers are present, default mapping is in
effect. Mapping of primitive types (e.g. int and double) uses
the to modifier, while arrays and pointers use the tofrom modi-
fier.

4. Testing Support for OpenMP 4.5 Offloading

4.1. Experimental Setup
For our experiments, we use three different system as our

testbed environments: Summitdev [30], Summit [31], and an
University of Delaware system called Eureka. Summitdev is
an early access system that is one generation removed from
Summit (worlds fastest supercomputer as of this writing), and

4

PR
EP

RIN
T

features IBM S822LC nodes with two IBM POWER8 proces-
sors. Each processor has 10 cores, and each core has 8 hard-
ware threads for a total of 160 threads per node. As target de-
vices, there are 4 NVIDIA Tesla P100 GPUs per node. Summit
has a hybrid architecture with each node containing multiple
IBM POWER9 CPUs and NVIDIA Volta GPUs all connected
together with NVIDIA’s high-speed NVLink. Figure 2a shows
a picture representation of a Summit node. Each node has over
half a terabyte of coherent memory (high bandwidth memory +

DDR4). This memory is addressable by all CPUs and GPUs.
Additionally 800GB of non-volatile RAM is available (can be
used as a burst buffer or as extended memory). The nodes are
connected in a non-blocking fat-tree using a dual-rail Mellanox
EDR InfiniBand interconnect.

Finally, a node of Eureka (at the University of Delaware)
is depicted in Figure 2b. Each node contains 2 Intel E5-2670,
with 8 dual SMT cores, for a total of 32 hardware threads. The
system has a total of 64 GB, divided into 2 different banks of
32 GB directly accessible by each Intel chip. As acceleration
devices, each node has 2 NVIDIA K40m cards with 12 GB of
GDDR5 memory each.

For the runtime overhead analysis discussed in Section 5
we used a combination of the Eureka system and Summit, given
that these two systems contain a variety of compilers that would
allow the largest comparison set, while running on two different
architectures, and generations of NVIDIA GPU Accelerators.

We currently run our tests in most of the compilers that al-
ready support for OpenMP 4.5 offloading constructs. This way
we are able to analyze the validity of the tests and at the same
time the behavior of each compiler’s implementation for a par-
ticular construct under study. The compilers we use include
GCC Version 7.1 through 8.2, IBM XL Version 16.1.1, and
IBM XL Version 13.01, Clang CORAL Version 3.8, as well as
Clang trunk versions 7.0.0 rc1, rc2, rc3 and release, and 7.0.1
rc1 and rc2.

4.2. Compilers’ Level of Support

To ensure a broad coverage of the OpenMP offload di-
rectives, in this paper we present our analysis for target,
target data, target enter/exit data, target teams

distribute, target update and combined constructs. In
order to assess the implementation state of different compilers
that support OpenMP 4.5 offloading, it is necessary to study
the level of support, in accordance to the specifications, of
the different OpenMP constructs involving offloading features.
Hence, we have created a set of tests that individually evalu-
ate each of the constructs and their associated clauses, in ac-
cordance with the OpenMP 4.5 specification [2]. Each test was
compiled and run with multiple compilers available to us on the
test systems detailed in 4.1. These results are summarized in Ta-
ble 1. Each column with a header containing a compiler’s name
and version represents a specific compiler running on a partic-
ular system. Due to the page limit consideration we picked a
subset of the actual tests performed, running on the test sys-
tems. We have made available the complete list of results on
our website [32]. The Table 1 omits tests that are currently in

formulation or in the development phase and as a result have
not passed the peer-review phase.

The tests undergo rigorous peer-review before we use them
for our analysis, we have not elaborated on this review process
as this is outside the scope of this paper. The version of the
compiler is on the column header. Each row represents a test
for a particular construct and clause. We differentiate between
tests that pass with no issues (P), tests that pass compilation
but have Runtime Errors (RE), and tests that have Compila-
tion Errors (CE). In the case of compilation errors, some tests
produce incorrect warning or error messages, while others will
crash the compiler. Examples of compilation errors are tests
12 and 79, is device ptr(var) clause when compiled with
GCC, which complains about var being mapped twice. Run-
time errors could be due to OpenMP specification’s compliance
errors and program crashes. One example of a compliance error
is test 13 defaultmap when compiled with XLC. enum vari-
ables, which are scalars, should be mapped as firstprivate by
default when no explicit mapping is declared. However, they
are mapped as tofrom. In general, the OpenMP 4.5 specifi-
cation states are not mapped from the host to the device, but
they have a data sharing attribute of firstprivate instead.
Additionally, test 47 for the directive target update and the
devices clause has a runtime error. The analysis of the exact
cause of the failure is outside the scope of this paper.

here are test cases that do not yield to an error, but that re-
sult in a warning message due to unexpected behavior that is
not necessarily against the specifications. An example occurs
when using the if(target:...) clause and modifier with
the target teams distribute parallel for. When the
variable inside the clause evaluates to false, and given the
target modifier, the parallel region should not change the
number of threads. However, Some compilers would run the
parallel region with a single thread as if the if clause would
have affected both the parallel region and the target directive.
While this cannot be considered an error this result is unex-
pected.

Clang running on Summit and summitdev, seems to be
working well on the systems available to us. CORAL Clang
version 3.8 which runs in summit and summitdev is different
to the Trunk Clang version. Merging changes made to the
CORAL clang is a work in progress. There are some errors
that only affect Summit, which might indicate issues with the
system-compiler combination or a version difference that was
not reported due to the independent development process of
the CORAL clang compiler. GCC offers an extensive support
as well, but we see issues with target data use device

pointer. However by providing timely feedback to the ven-
dors we hope that a quick resolution is achieved. Most of the
errors reported by these tests result in bug reports submitted
to the related compiler vendor. Vendors have been aware of
these problems and they have been actively working on solving
them through the development of this work. Instances where
the OpenMP Specification has been ambiguous - we have ap-
proached the OpenMP specification committee for more clarifi-
cation. We anticipate newer versions of the specification to re-
flect comments/suggestions from our discussions with the com-

5

PR
EP

RIN
T

(a) Summit: Power9 CPU and NVIDIA Volta V100s GPUs. (b) Eureka: X86 Intel CPU with NVIDIA GPUs

Figure 2: Node Structures of Summit and Eureka

mittee members.

5. Overhead Comparison of OpenMP 4.5 Offloading

5.1. Methodology
Another aspect that is important to an OpenMP user or an

application developer is to understand the overhead introduced
by the translation between OpenMP clauses and the actual code
that runs on the machine. Such overhead depends on many fac-
tors of the compilation process as well as the runtime neces-
sary to support the OpenMP programming model. In order to
support OpenMP, the compiler will look for annotations (Di-
rectives) in the code, and will replace them with runtime calls
and additional code generation. If the annotation contains a re-
gion of code, the compiler will apply an outlining technique
that consists of enclosing the region of code and placing them
into a function that is later on hooked into the OpenMP run-
time. In the case of offloading, the OpenMP compiler translates
the region of code enclosed by the target directive to outlined
device code and use multiple runtime calls to support code ex-
ecution, data movement and any other required functionality. It
is then important for application developers to understand the
overhead introduced by the runtime calls as well as the outlin-
ing mechanisms. Such information is valuable for application
developers as it gives an idea of the additional cost that is in-
troduced by the compiler’s translation of OpenMP directives.
Overhead measurement, in conjunction with the support status
of OpenMP 4.5 clauses described in Section 4, is also useful to
understand the maturity of an implementation, as well as pro-
viding more insights to the developers about the compiler selec-
tion for their applications. Furthermore, such information could
be used as a parameter for cost models of code offloading to ac-
celerators. In addition to how the different clauses affect such
overhead, it is also an interesting analysis to understand if the
runtime overhead scales with respect to the requested hardware
resources of the acceleration device, or it remains the same.

To this end, we intend to compare the runtime execution
times of different OpenMP implementations, as well as the im-
pact of the different OpenMP clauses. Additionally, we have
studied how the OpenMP compiler uses the CUDA driver and
CUDA runtime APIs through the execution traces. However,

while CUDA has a well defined set of tools to profile it, cur-
rently, there is no standardized tools ecosystem that can pro-
vide precise information regarding OpenMP runtime execution
times overall. Although this is likely to change with the intro-
duction of the OpenMP Tools (OMPT) in OpenMP 5.0, this is
currently not widely available across all the compilers we have
evaluated, nor it is supported by the different profiling tools.
Therefore for this work, we have proposed a methodology that
isolates the OpenMP runtime as much as possible, by removing
the device execution time, as well as the CUDA related execu-
tion time. Here we propose an indirect methodology to measure
runtime overhead for offloading clauses in OpenMP.

Following are some assumptions and observations when
measuring OpenMP directives overheads through our indirect
method that should be considered when studying the result fig-
ures:

• Given the nature of offloading code to the device, there
will be some overhead inherent in the underlying system
(e.g. host-device interconnection, bandwidth). However,
as long as we are running on the same system we expect
this system overhead to be a constant across all imple-
mentations.

• Code generation for each compiler is different. The tim-
ing results we provide for Compiler A may not be the
same for Compiler B as quality of device code generation
as well as optimizations have an impact on the perfor-
mance of a compiler, and this may vary from compiler to
compiler. Therefore, the numbers we have provided are
for comparison purposes only (same hardware different
compilers) and to assess the quality of the runtime func-
tionality for a given user code. The expectation is that the
different results can provide an idea about the maturity of
a particular runtime implementation, as well as the effect
of using a clause on the overhead of such runtime.

• Due to the methodology used, it is necessary to amortize
the effect of variables mapping and kernel computations.
Most of the compilers do not allow empty target regions,
hence it is necessary to provide a minimal code that does
not represent a large segment of the measured time. We

6

PR
EP

RIN
T

Test Name

(summit)
CLANG

3.8.0
CORAL

(summit)
XL 16.01

(summitdev)
CLANG

3.8.0
CORAL

(summitdev)
GCC 7.1.1

(summitdev)
XL 13.01 Test Name (Summitdev)

GCC 7.1.1
(Summit)
XLF 16.01

1 linked list.c P P P P P 51 offloading success.F90 P P
2 mmm target.c P P P P P 52 ompvv template.F90 P P
3 mmm target parallel for simd.c P P P P P 53 target data if.F90 P P
4 offloading success.c P P P P P 54 target data map.F90 P P
5 offloading success.cpp P P P P P 55 target data map components default.F90 P P
6 ompvv template.c P P P P P 56 target data map components from.F90 P P
7 target data if.c P P P P P 57 target data map components to.F90 P P
8 target data map.c P P P P P 58 target data map components tofrom.F90 P P
9 target data map array sections.c P P P P P 59 target data map devices.F90 P P

10 target data map classes.cpp P P P P P 60 target data map from array sections.F90 P P
11 target data map devices.c P P P P P 61 target data map set default device.F90 P P
12 target data use device ptr.c P P P CE P 62 target data map to array sections.F90 P P
13 target defaultmap.c P P P P RE 63 target depends.F90 RE P
14 target depends.c P P P P P 64 target device.F90 P P
15 target device.c P P P P P 65 target enter data allocate array alloc.F90 P CE
17 target enter data depend.c P P P P P 66 target enter data components alloc.F90 P P
18 target enter data devices.c P P P P P 67 target enter data components to.F90 P P
19 target enter data global array.c P P P P P 68 target enter data devices.F90 P P
20 target enter data if.c P P P P P 69 target enter data if.F90 P P
21 target enter data malloced array.c P P P P P 70 target enter data module array.F90 P P
22 target enter data struct.c P P P P P 71 target enter data set default device.F90 P P
24 target enter exit data depend.c P P P P P 72 target enter exit data allocate array alloc delete.F90 P CE
25 target enter exit data devices.c P P P P P 73 target enter exit data devices.F90 P P
26 target enter exit data if.c P P P P P 74 target enter exit data if.F90 P P
27 target enter exit data map global array.c P P P P P 75 target enter exit data module array.F90 P P
28 target enter exit data map malloced array.c P P P P P 76 target enter exit data set default device.F90 P P
29 target enter exit data struct.c P P P P P 77 target firstprivate.F90 P P
30 target firstprivate.c RE RE P P P 78 target if.F90 P P
31 target if.c P P P P P 79 target is device ptr.F90 P CE
32 target is device ptr.c P P P P P 80 target map array default.F90 P P
33 target map array default.c P P P P P 81 target map components default.F90 P P
34 target map classes default.cpp P P RE CE RE 82 target map module array.F90 P P
35 target map global arrays.c P P P P P 83 target map pointer.F90 P P
36 target map local array.c P P P P P 84 target map pointer default.F90 P P
37 target map pointer.c P P P P P 85 target map program arrays.F90 P P
38 target map pointer default.c P P P P P 86 target map scalar default.F90 P P
39 target map scalar default.c P P P P P 87 target map subroutines arrays.F90 P P
40 target map struct default.c P P P P P 88 target private.F90 RE P
41 target private.c P P P P P
42 target teams distribute.c P P P P P
43 target teams distribute defaultmap.c P P P P RE
44 target teams distribute device.c P P P P P
45 target teams distribute is device ptr.c P P P P P
46 target update depend.c P P P P P
47 target update devices.c P RE P P RE
48 target update from.c P P P P P
49 target update if.c P P P P P
50 target update to.c P P P P P

Table 1: Level of support for multiple compilers and systems of OpenMP 4.5 offloading constructs. Passed(P) our tests, Compilation Error(CE), and Runtime
Error(RE)

1 OMPVV INIT TEST ;
2 OMPVV START TIMER ;
3 # pragma omp . . .
4 { OMPVV TEST LOAD ; / / i f n e c e s s a r y }

5 OMPVV STOP TIMER ;
6 OMPVV REGISTER TEST ;
7 OMPVV PRINT RESULT ;

Code 1: Overhead measurement testing methodology

have used a simple code that allows results to be driven
mainly by the combination of the OpenMP runtime time,
and the time taken by the device runtime, and not driven
by the required code of the target region. CUPTI Allows
us to distinguish between the two.

All of our tests have the structures presented in code listing
1. Slight modifications are applied depending on the nature of
the construct being tested. For example the firstprivate or
the map clauses require an extra variable. We use the CUPT
library to obtain the execution trace of the CUDA-related func-
tionality. We assume that the OpenMP runtime corresponds to
anything else that is not CUDA.

The different parts of the tests preceded by OMPVV are
implemented in C macros to guarantee consistency. With
OMPVV INIT TEST resetting all the timers for the current
test. OMPVV START TIMER will make sure the CUPTI queue
of events is empty, and enable a new set of traces and

OMPVV STOP TIMER will wait for all the events queued in the
CUPTI profiler and stop all the timers to obtain the final exe-
cution times. OMPVV REGISTER TEST will perform some pre-
processing of the collected data to be able to parse it and pro-
cess it later on. The tests are executed 100 times each to obtain
significant statistical data. However we discard the max and
min values of all runs to remove possible outliers in the data
set. OMPVV TEST LOAD is applied to all the clauses that require
a region of code. However, this code only instantiates a vari-
able and increments it once, with the intention of making its
contribution to the execution time as small as possible.

Finally OMPVV PRINT RESULT reports the total execu-
tion time in a predefined format. The C macros are translated
to code that uses the CUPTI library available with the CUDA
library.

A similar approach can be used to evaluate combined di-
rectives. According to the specifications, using combined con-
structs is semantically the same as nesting the different direc-
tives, as can be seen in code listing 2. However, as long as the
semantic is kept, compilers can produce different codes. For
example since there is no code between one directive and the
next one, it is possible to simplify code generation by creating
a single outlined region (instead of multiple nested outlined re-
gions). We extend our methodology to also be able to compare
if the overhead is different between using combined constructs

7

PR
EP

RIN
T

1 / / combined c o n s t r u c t s
2 # pragma omp t a r g e t teams d i s t r i b u t e
3 f o r (i n t i = 0 ; i < N; ++ i) { . . . }
4

5 / / Nes ted c o n s t r u c t s
6 # pragma omp t a r g e t
7 # pragma omp teams
8 # pragma omp d i s t r i b u t e
9 f o r (i n t i = 0 ; i < N; ++ i) { . . . }

Code 2: Contrasting Combined and Nested Directives

and their nested counterpart across the different available com-
pilers. Additionally, to restrict the possible number of teams
and threads used by the two versions and across compilers, we
assigned them by using the the num teams and num threads
clauses. However, it is important to know that the actual val-
ues are still up to the compiler, as long as they are equal to or
lower than the requested number of threads and teams. Com-
bined directives offer a larger variety of possible combinations
that can be used. We focused our attention on the effect of a
single clause for combined clauses.

In addition, we explored the effect of requesting different
number of teams and number of threads with respect to runtime
overhead time when using the target teams distribute combined
directive and the target teams distribute parallel for combined
directive. This information would allow the user or an appli-
cation to understand the effect that scaling a problem over a
larger section of the acceleration device could have on the run-
time overhead. As an example, these numbers or similar values
(obtained through our testing methodology for a different sys-
tem) could be used as part of a cost model that determines the
appropriate distribution of work across the acceleration device.
Additionally, these values play an important role in the analy-
sis of sequential and overhead parameters of the Amdahl’s law,
when considering the benefits of parallelism for a particular ap-
plication.

for the overhead calculations, we use Summit and Eureka
as it allows us to compare a larger number of compilers, two
different host architectures (POWER vs x86), and two different
generations of NVIDIA accelerators (Tesla and Volta). We used
-O2 across all the experiments. However, OpenMP runtime are
implemented by linking a pre-compiled library that contains the
runtime code with the user generated binary. For this reason,
the compilation flag should not have a considerable effect on the
code. As explained before, we used the CUPTI library to obtain
an execution trace of the CUDA library and CUDA driver, as
well as memory copies and kernel execution times. The gray
color on the results plot represent the CUDA execution time.

As compilers evolve towards a better implementation of the
OpenMP standard, their implementations change from versions
to versions. In order to do a fair comparison between com-
pilers, we also have to consider not only the latest versions,
but also their evolution across multiple versions. For GCC and
Clang, as the two major open source compilers that implement
OpenMP 4.5 offloading, there have been multiple versions and
sub-versions releases that support OpenMP 4.5 offloading. This
allows us to see their evolution over time. To this end, we used
a large set of versions for these compilers on the Eureka clus-
ter. For GCC versions 7.1 , 7.2 , 7.3 , 8.1 , 8.2. And for Clang

versions 7.0.0 release candidates rc1 rc2 and rc3, and stable re-
lease; and 7.0.1 release candidates rc1 and rc2. We used all
of these versions to run our overhead analysis and reported our
findings. Despite these efforts, there was no statistically consid-
erable changes in the execution times. For this reason we only
provide results for a set of compilers. The extended version of
this plots along with other plots are available on our website
under publications tab. (Please look into the reports section).

5.2. Observation and Analysis

Our methodology has been designed to be able to offer a
wide coverage of the offloading features, as well as the number
of compilers. This section shows the results of our experiments
to measure the overhead of the different directives and clauses
for different compilers.

5.2.1. Offloading on Summit
Figure 4 shows the overhead measurements using differ-

ent offloading directives: target, target data, target

enter data, target exit data and target update as
well as the combined constructs target teams distribute

and target teams distribute parallel for. The com-
pilers available for this system are GCC 8.1.1, Clang (CORAL
version, based off trunk version 3.8.0) and XLC 16.1.1.0. The
x-axis represent the different clauses that are permissible with
the directive and the y-axis gives the time in micro-seconds.

Across all the results we can see that XLC and Clang show
considerably similar results. This is also the case for the CUDA
traces studied, where the API calls and CUDA related calls hap-
pen at the same relative time and in the same order. There are
only a few cases where this is not the case, some of which are
mentioned later on.

On Summit, there is a clear difference between GCC, Clang
and XL compilers with GCC performing significantly worse for
the target directive, as can be seen in figure 4a. To further an-
alyze where the differences are arising from, we profiled the
calls using NVIDIA’s CUPTI. CUPTI gives us a breakdown of
the overhead times into CUDA calls and OpenMP runtime. We
observe that with GCC, CUDA calls dominate the time taken
for target directive. Further analysis showed us that specifi-
cally the CUDA memory allocation (cuMemAlloc v2) and de-
allocation (cuMemFree v2) functions were the most time con-
suming calls. In contrast, neither Clang nor XLC use CUDA
memory allocation for the target directive. Since the tests
validate the behaviour of the calls, meaning all implementa-
tions are correct, GCC seems to be doing a lot of extra memory
allocations that may not be required (but not banned) by the
OpenMP specification. In addition, it can be seen that the ex-
ecution time of cuLaunchKernel is longer in both XLC and
clang, in comparison to the GCC counterpart. While further
studies of the source code is necessary to confirm this assess-
ment, it is possible that certain parameters needed are sent as
parameters of the kernel function. Such efforts have not been
implemented in GCC, despite interest in the mailing list [33].

For the target data directive in figure 4d we see that
all three implementations have comparable overhead for most

8

PR
EP

RIN
T

(a) target (b) target teams distribute (c) target teams distribute

parallel for

(d) target data (e) target enter data (f) target exit data (g) target update

Figure 3: Overhead measurement for offloading directives on Eureka cluster

clauses except the map clause with the to qualifier. More de-
tailed profiling results show that both Clang and XLC spend
more time in the OpenMP runtime. Unfortunately XLC be-
ing closed source with inadequate tools support (in our hum-
ble opinion) we cannot comment on which run-time calls are
responsible for the uptick in overhead. Further studies of the
clang and GCC compilers could provide more insights, but such
efforts are out of the scope of this paper. Figure 4e shows a sim-
ilar behaviour for target enter data with map clause with
the to qualifier. This does not come as a surprise as both com-
binations involve setting-up the data environment before the
computation is offloaded to the device, and as such must use
similar/same code translation strategies.

Both target enter data with map clause with the to

qualifier and target exit data (Fig 4f) with map clause with
the from qualifier involve data transfer to the device and from
the device respectively. Their detailed profiles show that along
with the OpenMP runtime, the CUDA asynchronous mem-
ory copy from host to device (cuMemcpyHtoDAsync) (for to)
and memory copy from device to host (cuMemcpyDtoH) (for
from) contribute the most overhead. The depend clause for
the target enter/exit data and target update seem to
have no effect on GCC, but an effect on XLC and Clang com-
pilers. This can be attributed to the differences in the imple-
mentations. The CUDA profiling details show that both Clang
and XLC compilers rely on the cuEventQuery call to verify
the completion of asynchronous memory copy calls while GCC
uses synchronous memory copy functions.

The target update directive in figure 4g exhibits similar
overhead profiles with more overhead associated with combi-
nations that trigger data transfers.

For target teams distribute directive in figure 4b and
target teams distribute parallel for directive in fig-
ure 4c GCC spends a very high portion of the call doing CUDA
calls for memory allocation and de-allocation, as it is the case
of the target directive. In contrast both Clang and XLC use
a combination of CUDA pointer manipulation functions and
memory copy from host to destination to achieve the same re-
sults.

These two figures show an increasing cost with respect to
spawning threads and teams, especially in GCC. However, the
ratio between CUDA and OpenMP Runtime remains similar,
and the behavior across the different clauses does not seem to
change considerably.

5.2.2. Offloading on Eureka
We repeat the same experiments on the Eureka cluster built

at the University of Delaware. Figure 3 shows the results for the
Eureka system. Since access to Summit is restricted, most ap-
plication developers rely on open-source implementations de-
ployed on clusters (similar to Eureka) for development. Having
data points to compare overheads of open-source implemen-
tations and their corresponding vendor implementations may
prove helpful to application developers that would like to make
performance-based design choices.

Here, we are comparing GCC 8.2.0 with Clang 7.0.0 (from

9

PR
EP

RIN
T

(a) target (b) target teams distribute

parallel for

(c) target teams distribute

(d) target data (e) target enter data (f) target exit data (g) target update

Figure 4: Overhead measurement for offloading directives on Summit

trunk). In the case of the target construct (figure 7b), Clang
tends to incur less overhead than GCC for most cases except
for the depend clause. The trend is seen across all the Clang
target directives.

One of the main reasons behind it is that in Clang the
depend clause binds the specified CUDA context to the call-
ing CPU thread. This seems to trigger a lot of the OpenMP
runtime activities.

The target teams distribute and target teams

distribute parallel for both seem to spend a lot of time
in CUDA memory allocation and freeing in GCC. Other con-
structs not discussed above are not significantly different in
GCC and Clang.

Something that draws our attention is the large difference
between GCC running in Summit with respect to overhead tim-
ing for the target directive, and the same version running in
our Eureka Cluster (The reader is to be reminded that we ran
all the different versions available to us at the time of running
our tests, as in section 5.1). However, when teams and threads
spawn, GCC on the Eureka cluster is actually worse for that
case.

The execution traces reveal similar CUDA API calls, as well
as execution order between these APIs. There seem to be little
differences between the home-brewed clang version for sum-
mit, and the trunk version.

For GCC running in Eureka, there is a considerable differ-
ence in the overhead when using the depend, firsprivate
and lastprivate clauses. We suspect that the required syn-

chronization mechanisms for these clauses could cause this ef-
fect, however, further exploration is necessary to be able to
draw larger conclusions.

Versioning does not seem to have a large effect on the results
either. As we did not observe drastic changes between versions
of compilers, we have not reported results for every compiler
version.

5.2.3. Combined Constructs
According to the OpenMP specifications, a combined con-

structs is:

A construct that is a shortcut for specifying one
construct immediately nested inside another
construct. A combined construct is semantically
identical to that of explicitly specifying the first
construct containing one instance of the second
construct and no other statements.

However, from code generation standpoint, and thanks to
the lack of a block of code between the different nested con-
structs and the well structured generated code (i.e. no com-
plex parallel vs sequential regions), it is possible to reduce the
complexity of the resulting code. We developed a test fol-
lowing similar methods described above to study the runtime
overhead timing of target teams distribute and target

teams distribute parallel for constructs in combined
and nested form. Results are reported in figure 5

10

PR
EP

RIN
T

(a) target teams distribute Eureka

(b) target teams distribute parallel for Eureka

(c) target teams distribute summit

(d) target teams distribute parallel for summit

Figure 5: Comparing Combined directives vs. Nesting of those directives OpenMP directives

11

PR
EP

RIN
T

(a) Summit (b) Eureka

Figure 6: target teams distribute varying the number of teams. Effects of the number of teams on the overhead of the runtime on multiple compilers and
systems

Most of the results do not showcase major differences be-
tween combined and nested tests. Tests on the Eureka sys-
tem show major differences in the depend clause across all the
compilers for both target teams distribute and target

teams distribute parallel for. In particular for the
clang compiler, there is a large difference in the runtime por-
tion of the overhead time (area not in gray). However, only for
target teams distribute there is a considerable change in
the CUDA behavior (area in gray). GCC on the other hand
maintains the same runtime overhead across all the different
clauses, but has larger variations in the CUDA for different
clauses, without a clear preference between nested or com-
bined.

On the contrary, Summit has a different behavior. The over-
all CUDA times have a low variation across almost all the tests
between nested and combined. The only exception is for Clang
and XLC when no clauses are used for the target teams

distribute parallel for. On the other hand, the time
taken by the runtime has a larger variability, but with no clear
preference between nested or combined. Clauses that involve
data mapping present a larger variability in the execution time.

The data from our studies was not sufficient to determine the
cause of the observed behavior between nested and combined
as far as the OpenMP runtime is concerned.

5.2.4. The effect of number of teams and number of threads
Figure 6 shows how much the overhead changes according

to the number of teams for the different compilers on both sys-

tems. For the case of GCC and Clang, on both systems, there
are changes in the resulting overhead that depends on the num-
ber of teams. The variation of overhead seems to be higher for
Clang, than for GCC. It is interesting to see that for team size
of 1 Clang’s overhead is more than any other larger team size.
The exception is on Summit when teams are used along with
the map clause. GCC has similar (but high) overhead on both
Summit and Eureka. XLC’s overhead trend on Summit gradu-
ally increases with an increase in the number of teams but we
see a similar rise in the presence of map clause.

With respect to Figure 7, it provides an even more inter-
esting perspective of the effect of the number of teams and the
number of threads. Each bar of this plot corresponds to a sin-
gle number of teams and a single number of threads. Figure
7 tries to capture the overhead changes when the number of
threads vary with increasing number of teams. For Summit, the
changes in overhead across all implementations are not as sub-
stantial as they are in Eureka. But the overhead trend for GCC
is reversed on Eureka. On Summit, the overhead of GCC de-
creases with increase in number of teams and further increases
with the size of the team (i.e. number of threads). On Eureka
the overhead increases marginally with an increase in the num-
ber of teams however increases significantly with an increase in
team size.

Clang on Eureka shows the most desirable overhead pattern
with a decrease in overhead and increase in number of teams
as well as the sizes of the teams. This suggests that during
optimization of compute kernels compiled with GCC, it is a

12

PR
EP

RIN
T

(a) target teams distribute parallel for directive running on Summit

(b) target teams distribute parallel for directive running on our Eureka cluster

Figure 7: Effects of the number of teams and number of threads on the overhead of the runtime on multiple compilers and systems

distinct possibility that lowering the requested resources could
lead to speedup.

6. Conclusion and Future Work

OpenMP’s offloading capabilities will become more critical for
an application to scale over large heterogeneous nodes that are
commonly found and easily accessible lately. In this paper
We provide a detailed analysis of how the different OpenMP
compiler implementations support OpenMP 4.5 language fea-
tures from three different perspectives: 1) testing of features
OpenMP 4.5 offloading features described by the specification,
2) the runtime overhead and performance comparisons of all
the OpenMP 4.5 offloading features, and 3) the runtime over-
head and performance comparison of combined vs nested con-
structs as well as the effect of changing the number of teams
and number of threads over this overhead. Additionally, we
list ambiguities found while interpreting the description of the
language features within the OpenMP specification as well as
report possible errors found in the implementations to different
vendors.

Although our current manuscript at the time of submission
(April 2019) does not discuss 5.0 implementations as they are
not available yet, we expect that the tests and the methodology
to have a long term impact. Many of these tests will have a
significant overlap between version 4.5 and 5.0, hence they will
remain valid as is or with minor edits.

We also see these tests as a valuable resource for the

OpenMP application developers. We are actively looking for
common cases that we believe might be prone to implementa-
tion errors or that are important to applications. We have not
discussed those kernels in this manuscript as they require fur-
ther analysis before we can report our findings accurately. The
tests and the overhead measurement methodologies could be
used by HPC systems designers to assess the level of support
of OpenMP offloading features on their platforms. In this work
we also discuss overheads associated with different directives
across their implementations prevalent on different platforms
that we have access to. Studying how the OpenMP compilers
use CUDA drivers and CUDA runtime APIs through execution
traces was particularly useful to report findings. It is interesting
to note that the wide differences in terms of overheads that are
observed among the different compilers, as well as how some
clauses could considerably hurt performance of applications.
We believe these are some of the important takeaways of this
work especially when there are not many such similar stories
reported publicly for the users to read about. In addition, by
comparing release versions of different compilers, there seem
to be more focus on reaching compliance with respect to the
specifications, than there is with respect to drastically changing
the possible runtime implementations, leading to the same over-
head across multiple compiler versions. We aim to make the
our tests publicly available for anyone to use. Going forward,
we also plan to interact with standard benchmarking bodies like
SPEC/HPG that released SPEC ACCEL V1.0 [34, 35, 36] to
donate our tests and kernels for potential inclusion in the next

13

PR
EP

RIN
T

release versions of SPEC OMP and SPEC ACCEL. Discussions
are underway to eventually make the tests available as an offi-
cial ARB testsuite. These tests will be used for acceptance test-
ing in various facilities such as ORNL, LLNL, ANL to ensure
the stability, performance, and functionality of future platforms
at their respective locations.

7. Acknowledgements

This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, the Exascale Comput-
ing Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration under contract number DE-
AC05-00OR22725. We would also like to thank Tom Scogland
from Lawrence Livermore National Laboratory for his contri-
butions of OpenMP offloading usage in ECP applications and
Hal Finkel from Argonne National Laboratory for his valuable
input.

[1] Top500, Global supercomputing capacity creeps up as petascale sys-
tems blanket top 100, https://www.top500.org/news/global-
supercomputing - capacity - creeps - up - as - petascale -

systems-blanket-top-100/.
[2] OpenMP, Openmp 4.5 specification, http://www.openmp.org/wp-

content/uploads/openmp-4.5.pdf.
[3] OpenACC, OpenACC, Directives for Accelerators, http :

//www.openacc.org/.
[4] NVIDIA, CUDA SDK Code Samples, http : / /

developer.nvidia.com/cuda- cc- sdk- code- samples, accessed:
2017-02-03.

[5] OpenCL, OpenCL, https://www.khronos.org/.
[6] NVIDIA Thrust, https://developer.nvidia.com/thrust, accessed:

2017-02-03.
[7] H. C. Edwards, C. R. Trott, D. Sunderland, Kokkos: Enabling manycore

performance portability through polymorphic memory access patterns,
Journal of Parallel and Distributed Computing 74 (12) (2014) 3202–3216.

[8] OpenMP, OPENMP 5.0 IS A MAJOR LEAP FORWARD, https:

//www.openmp.org/press-release/openmp-5-0-is-a-major-
leap-forward/.

[9] M. P. Clay, D. Buaria, P. K. Yeung, Improving scalability and ac-
celerating petascale turbulence simulations using openmp, http://

openmpcon.org/conf2017/program/, to Appear (2017).
[10] M. Clay, D. Buaria, P. Yeung, T. Gotoh, Gpu acceleration of a petascale

application for turbulent mixing at high schmidt number using openmp
4.5, Computer Physics Communications 228 (2018) 100–114.

[11] D. F. Richards, R. C. Bleile, P. S. Brantley, S. A. Dawson, M. S. McKin-
ley, M. J. O?Brien, Quicksilver: A proxy app for the monte carlo transport
code mercury, in: Cluster Computing (CLUSTER), 2017 IEEE Interna-
tional Conference on, IEEE, 2017, pp. 866–873.

[12] OpenMP, Openmp compilers, http://www.openmp.org/resources/
openmp-compilers/.

[13] C. Wang, S. Chandrasekaran, B. Chapman, An openmp 3.1 validation
testsuite, in: International Workshop on OpenMP, Springer, 2012, pp.
237–249.

[14] M. Müller, P. Neytchev, An openmp validation suite, in: Fifth European
Workshop on OpenMP, Aachen University, Germany, 2003.

[15] NVIDIA, NVIDIA CUDA Profiling Tools Interface (CUPTI), https:
//developer.nvidia.com/CUPTI.

[16] J. M. Diaz, S. Pophale, K. Friedline, O. Hernandez, D. E. Bernholdt,
S. Chandrasekaran, Evaluating support for openmp offload features, in:
Proceedings of the 47th International Conference on Parallel Processing
Companion, ACM, 2018, p. 31.

[17] C. Wang, R. Xu, S. Chandrasekaran, B. Chapman, O. Hernandez, A val-
idation testsuite for OpenACC 1.0, in: Parallel & Distributed Process-
ing Symposium Workshops (IPDPSW), 2014 IEEE International, IEEE,
2014, pp. 1407–1416.

[18] G. Kyle Friedline, Sunita Chandrasekaran, O. Hernandez, Openacc 2.5
validation testsuite targeting multiple architectures, In Proceedings of
P3MA Workshop co-located with ISC 2017To appear.

[19] S. S. Pophale, A. Curtis, B. Chapman, S. Poole, Poster: Validation and
verification suite for openshmem, in: Proceedings of the Seventh Confer-
ence on Partitioned Global Address Space Programming Model (PGAS
2013), 2013, pp. 257,258.

[20] M. S. Müller, C. Niethammer, B. Chapman, Y. Wen, Z. Liu, Validat-
ing openmp 2.5 for fortran and c/c++, in: Sixth European Workshop on
OpenMP, KTH Royal Institute of Technology, Stockholm, Sweden, 2004.

[21] J. Dongarra, M. Furtney, S. Reinhardt, J. Russell, Parallel loops?a test
suite for parallelizing compilers: Description and example results, Paral-
lel Computing 17 (10-11) (1991) 1247–1255.

[22] F. H. McMahon, The livermore fortran kernels: A computer test of the
numerical performance range, Tech. rep., Lawrence Livermore National
Lab., CA (USA) (1986).

[23] F. J. Reid, J. M. Bull, Openmp microbenchmarks version 2.0, in: Proc.
EWOMP, 2004, pp. 63–68.

[24] J. M. Bull, F. Reid, N. McDonnell, A microbenchmark suite for openmp
tasks, in: International Workshop on OpenMP, Springer, 2012, pp. 271–
274.

[25] X. Yang, Y. Chen, E. Eide, J. Regehr, Finding and understanding bugs
in c compilers, in: ACM SIGPLAN Notices, Vol. 46, ACM, 2011, pp.
283–294.

[26] LLVM, Llvm Testing Infrastructure Guide, http://www.llvm.org/
pre - releases / 4.0.0 / rc2 / docs / TestingGuide.html#test -
suite.

[27] J. M. Diaz, S. Pophale, K. Friedline, O. Hernandez, D. E. Bernholdt,
S. Chandrasekaran, Evaluating support for openmp offload features, in:
Proceedings of the 47th International Conference on Parallel Processing
Companion, ICPP ’18, ACM, 2018, pp. 31:1–31:10.
URL http://doi.acm.org/10.1145/3229710.3229717

[28] G.-T. Bercea, C. Bertolli, S. F. Antao, A. C. Jacob, A. E. Eichenberger,
T. Chen, Z. Sura, H. Sung, G. Rokos, D. Appelhans, et al., Performance
analysis of openmp on a gpu using a coral proxy application, in: Pro-
ceedings of the 6th International Workshop on Performance Modeling,
Benchmarking, and Simulation of High Performance Computing Sys-
tems, ACM, 2015, p. 2.

[29] M. Martineau, S. McIntosh-Smith, W. Gaudin, Evaluating openmp
4.0’s effectiveness as a heterogeneous parallel programming model, in:
2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), IEEE, 2016, pp. 338–347.

[30] Oak Ridge National Lab, Ascending to summit: Announcing summit-
dev, https://www.olcf.ornl.gov/2017/02/28/ascending-to-
summit-announcing-summitdev/.

[31] Oak Ridge National Lab, Summit, https://www.olcf.ornl.gov/
olcf-resources/compute-systems/summit/.

[32] Jose Monsalve Diaz, Swaroop Pophale,Oscar Hernandez, David Bern-
holdt, and Sunita Chandrasekaran, Openmp 4.5 validation and verifica-
tion suite, https://crpl.cis.udel.edu/ompvvsollve/.

[33] G. M. L. C. Philippidis), [patch,wip] use functional parameters for data
mappings in openacc child functions, https://gcc.gnu.org/ml/gcc-
patches/2017-12/msg01202.html.

[34] G. Juckeland, W. Brantley, S. Chandrasekaran, B. Chapman, S. Che,
M. Colgrove, H. Feng, A. Grund, R. Henschel, W.-M. W. Hwu, et al.,
Spec accel: a standard application suite for measuring hardware acceler-
ator performance, in: International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems,
Springer, 2014, pp. 46–67.

[35] G. Juckeland, A. Grund, W. E. Nagel, Performance portable applications
for hardware accelerators: lessons learned from spec accel, in: Parallel
and Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE
International, IEEE, 2015, pp. 689–698.

[36] G. Juckeland, O. Hernandez, A. C. Jacob, D. Neilson, V. G. V. Larrea,
S. Wienke, A. Bobyr, W. C. Brantley, S. Chandrasekaran, M. Colgrove,
et al., From describing to prescribing parallelism: Translating the spec
accel openacc suite to openmp target directives, in: International Confer-
ence on High Performance Computing, Springer, 2016, pp. 470–488.

14

