
OpenMP 4.5	Validation	&	Verification	Suite	for	
Offloading	Features

UDEL:	Sergio	Pino (sergiop@udel.edu),	Jose	Monsalve (josem@udel.edu)	,	Sunita	Chandrasekaran	(schandra@udel.edu)
ORNL:	Swaroop Pophale (pophaless@ornl.gov),	Oscar	Hernandez (oscar@ornl.gov),	David	Berndholt (bernholdtde@ornl.gov)

ANL:	Hal	Finkel (hfinkel@anl.gov)

• Building Validation and Verification Suite focusing on the
offloading features of OpenMP 4.5 and beyond

• Creating functional and unit tests
• Collaboration with ECP application developers to create

representative scientific use cases
• Project in collaboration with OpenMP community, Oak

Ridge National Lab (ORNL), Argonne National Lab (ANL),
University of Delaware (UDEL), IBM, LLVM, Cray, GCC

• Project uncovers compiler and runtime implementation
bugs and ambiguities in the OpenMP 4.5 specification

• Compilers that this project use for evaluation include
Clang/LLVM, GNU GCC, IBM XL, Cray CCE

• Target platforms include ORNL’s TITAN and SummitDev
(representative exascale system)

• Project is open for collaboration
• Feedback and suggestions from the HPC community is

welcome - Contact any of the authors

Abstract Methodology
Analyze	OpenMP 4.5	
offload	directive	OR	
ECP	Application

Formulate	test
Discuss	validity	and	

adherence	to	
specification

NO

YES

Test	with	available	
implementations

Test	
passes?

Open	for	community	
review

NO

YES

File	Bug	report	with	
vendor	

Add	to	the	V&V	suite

Test	
accepted?

YES

Specification	
issue

Implementation	
BugBring	to	OpenMP

Specification	discussion

NO

Why?

Test	
valid?

There are three possible positive outcomes of the process we have adopted. Either a test
passes through all the checks and makes it to the validation suite, uncovers a bug in the
vendor implementation of the OpenMP 4.5 standard, or highlights a contentious concept or
text that is easy to misinterpret and brings it to the attention of the OpenMP community and
specification developers. All tests are written agnostic to where they are executed (host vs.
target). After a test executes the output indicates if the test passed or failed and where it was
executed (host or target).

OpenMP offloading Simple	Test	Cases

Host Devices

Host centric execution of code: Offloading directives provides the compiler with
hints to create device executable code, as well as inline all the necessary calls for
device initialization, code execution and data movement between host and device.
OpenMP frees the programmer from bookkeeping data allocation and movement,
as well as separate compilation of code for host and device.
OpenMP 4.5 in particular provides more control to the programmer to handle data
movement between host and device.

#pragma omp target	map(tofrom:	myVar)	if(myCondition)	device(2)
{
myVar ++;

}

Device	code	generation

Data	movement

Conditional	exec	on	device

Runtime	device	selection

Offloading Multiple devices:
Distribute each row of a matrix to one of the
available devices(lines 5-14). Each iteration
performs data movement and computation in a
different device. Target data region maps a portion
of the matrix to each device(line 6). Computation is
performed on the target region (line 8).

Mapping static attribute of a class:
The unique value of the stativ VAR is mapped
inside the method of a class with a target region
and the map clause (lines 6-9). An OpenMP 4.5
capable compiler should capture the static variable
(VAR) and map it to and from the device.

Task dependencies:
Task graph composed of host and
target tasks that have in and out
dependencies between each other.
Asynchronous behavior is specified
using the nowait clause. Data map
tasks are separated from
computation tasks.

Complex	Test	Cases Current	Snapshot
Our intention is to develop a test suite for the entire OpenMP 4.5
specification. We divide our tests by directives. These tests have gone
through the methodology described previously. Some of them have result
in different bug reports.
Following is a snapshot of the current suite
• Tested using 4 different compilers: Clang, IBM XL, GCC and Cray CCE.
• Target platforms:

• Titan Cray XK7: AMD Opteron x64 + Nvidia K20X
• SummitDev: IBM Power8 + NVIDIA TESLA P100

Deep Copy of Classes:
This code came from analyzing a full scale ECP application. It
uses the declare target directive (line 4 to 36) to ensures that
procedures and global variables can be executed and data can
be accessed on the device. When the C++ methods are
encountered, device-specific versions of the routines are
created that can be called from a target region.
Deep copy is performed through the use of target enter data
(lines 43 and 44) by first mapping the class and then the
individual class members. Computation is performed on the
device (line 46). After computation is over, the data is copy
back to the host (line 52).

Mapping Linked list to device:
The map_ll function (line 5) uses target enter data directive to
first map the head of the linked list, and then map the pointer
to the next link using array dereferencing syntax. The
unmap_ll (line 19) function explicitly copies the data using
map-type from with target exit data map.


