
Evaluating Support for OpenMP
Offload Features

UDEL: Jose Monsalve (josem@udel.edu) , Sunita Chandrasekaran (schandra@udel.edu), Kyle Friedline (utimatu@udel.edu)

ORNL: Swaroop Pophale (pophaless@ornl.gov), Oscar Hernandez (oscar@ornl.gov), David Berndholt (bernholdtde@ornl.gov)

OpenMP has evolved to meet the rapid development
in hardware platforms including heterogenous
programming. DOE applications tend to push the
bleeding edge of features ratified in the OpenMP
specification and tend to expose the rough edges of
the features’ implementations. The software harness
on DOE supercomputers (e.g. Titan and Summit)
include Cray, Clang, Flang, XL and GCC compilers which
claim partial support for the latest features in OpenMP
4.0+. This work focuses on evaluating such support
across compiler implementations, focusing on
OpenMP 4.5 target offload directives. Our preliminary
evaluation consist of a tests suite, as well as
performance comparison.
Our tests not only evaluate the OpenMP
implementations but also expose ambiguities in the
OpenMP 4.5 specification. We see this as a synergistic
effort to help identify and correct features that are
required by DOE applications and prevent deployment
delays later on.

Abstract OpenMP 4.5 offloading

Simple Test Cases

OpenMP abstract machine for offloading features is
host centric: Offloading directives hint the compiler
to create device executable regions of code, as well
as code and data movement between host and
device.
OpenMP frees the programmer from bookkeeping
data allocation and movement, as well as separate
compilation of code for host and device.
OpenMP 4.5 in particular provides more control to
the programmer to handle data movement between
host and device.

#pragma omp target map(tofrom: myVar) if(myCondition) device(2)
{ myVar ++; }

Offloading Multiple devices:
Each row of the matrix to each of the
available devices. Use the device clause to
select a device for data movement and
computation. Target data region maps a
portion of the matrix to each device (line 6).
Target region does the computation (line 8).

Mapping static attribute of a class:
The unique value of the static VAR is default mapped
inside the method of a class with a target region (lines 6-
9). An OpenMP 4.5 capable compiler should capture the
static variable (VAR) and map it to and from the device.

Task dependencies:
Task graph composed of host tasks
and target tasks that have in and
out dependencies between each
other. Asynchronous behavior is
specified using the nowait clause.
Data map tasks are separated
from computation tasks.

Complex Test Cases

Specification coverage evaluation

Deep Copy of Classes:
This code came from analyzing a full scale
ECP application. It uses the declare target
directive (line 4 to 36) to ensures that
procedures and global variables can be
executed and data can be accessed on the
device. When the C++ methods are
encountered, device-specific versions of
the routines are created that can be called
from a target region.
Deep copy is performed through the use
of target enter data (lines 43 and 44) by
first mapping the class and then the
individual class members. Computation is
performed on the device (line 46). After
computation is over, the data is copy back
to the host (line 52).

Mapping Linked list to device:
The map_ll function (line 6) uses target
enter data directive to first map the head
of the linked list, followed by mapping the
pointer to the next node of the list and
assigning it on the device. The unmap_ll
(line 20) function explicitly copies the data
using map(from:…) and target exit data.

Host Devices

Target region for device code generation

Conditional execution of code in device

Target device selection during runtime

Device-host data management

Performance evaluation

My Vector

Attributes

Methods

#p
ra

gm
a

om
p

ta
rg

et
 d

ec
la

re

#p
ra

gm
a

om
p

ta
rg

et
 e

nt
er

 d
at

a

Testing systems

Methodology

Two different systems and 5 different
compilers and versions were tested.
Summitdev features IBM S822LC nodes
with POWER8 processors. Each node has a
total of 160 hardware threads, 256 Gb of
DRAM and as target devices, 4 NVIDIA
Tesla P100 GPUs. The second system is an
in-house cluster where each node features
two Intel(R) Xeon(R) CPU E5-2670 with 32
Hardware threads, 64 Gb of DRAM and one
NVIDIA K20.

Compilers
Summitdev:
• GCC 7.1.1
• Clang 3.8.0
• XLC 13.1.6
In house cluster:
• GCC 8.1.0
• Clang 7.0.0 (Trunk version)

160.45

175.59

160.41

160.38

160.55

347.04

337.42

337.10

337.36

337.33

506.83

506.76

506.47

504.26

553.08

504.99

545.34

530.71

504.16

1,002.60

504.32

1,001.95

504.32

504.74

0.19

17.15

0.19

52.96

0.21

10.96

0.18

0.17

54.83

0.18

23.25

23.05

23.11

31.19

48.71

30.50

43.17

30.53

31.52

34.57

31.63

32.75

30.94

31.50

0.16

14.31

0.16

54.20

0.15

10.47

0.14

0.14

54.48

0.14

22.21

22.19

22.18

12.55

22.33

11.82

17.57

11.80

11.79

11.83

14.12

116.26

11.80

11.87

99.35

137.21

98.73

100.22

99.97

175.60

152.81

145.82

147.08

161.32

314.25

287.50

286.27

210.04

187.47

192.28

203.02

195.75

219.99

196.76

198.27

173.77

193.02

177.88

100.61

118.59

100.43

100.41

100.55

171.85

142.01

132.59

132.53

156.31

275.06

263.73

264.68

263.92

302.62

261.88

303.22

286.83

264.56

588.29

263.93

602.06

308.90

309.99

0 100 200 300 400 500 600 700 800 900 1000 1100

target exit data map if true

target exit data map from

target exit data map device

target exit data map depend

target exit data map delete

target enter data map to

target enter data map if true

target enter data map device

target enter data map depend

target enter data map alloc

target data map tofrom

target data if

target data device

target private

target map tofrom

target map to

target map from

target is device ptr

target if

target firstprivate

target device

target depend

target defaultmap

target

Time (us)

GCC(8.1.0 on x86 system)

CLANG Trunk 7.0.0 (x86 system)

XLC (13.1.6 on Summitdev)

CLANG (3.8.0 on Summitdev)

GCC (7.1.1 on summitdev)

Measuring runtime overhead with multiple
executions of different openMP directives
and clauses. Each experiment consist of
1002 runs, removing the max and min and
taking the average value.

Results We are currently developing a test suite to asses the level of coverage of the OpenMP
4.5 specifications by the different compiler implementations. We have put together a
methodology that guarantees full coverage of the specification as well as correct test
implementation. We currently have released over 64 tests and we are currently in the
process of releasing 33 more tests that are under review.

Visit our
Website

Systems

Results summary

