Evaluating Support for OpenMP Offload Features

Jose Monsalve Diaz Swaroop Pophale Kyle Friedline Oscar Hernandez David E. Bernholdt Sunita Chandrasekaran

Outline

- 1. Introduction
- 2. Problem statement and contributions
- 3. OpenMP 4.5 offloading
- 4. Methodology
- 5. Experimental Setup
- 6. Results
- 7. Conclusions

Introduction

Current Trends in HPC

(Data from Top 500 list: www.top500.org)

Current Trends in HPC

(Data from Top 500 list: www.top500.org)

Why Accelerator devices?

- Power wall
- Simpler cores and considerably larger core count
- Programs taking advantage of SIMD and SPMD models
 - Better performance/Watt ratio
 - Benefit from large parallelism

But there are still programmability challenges...

Problem statement and contributions

Problem statement

Given the specifications of **OpenMP 4.5**, the multiple compiler implementations that exist, and the different systems where this programmer model will be used. **how to assess the level of compliance of implementations and systems with respect to the specifications document?**

Problem statement Explanation

Programming model specifications document

"Legal" document that binds the implementation and the user

- Compiler developers guide their products based on the specifications documents. They must respect them to claim support
- Users do not need to learn implementation specific aspects of the programming model. They use the specifications
- What about the system that the user is running on?

10

Contributions of this work

We are the "lawyers" of the OpenMP 4.5 Specifications:

- Identify extent of OpenMP offload support (target directives) in OpenMP 4.5 implementations such as GCC, Clang/LLVM, IBM XL and Cray CCE
- Analyze support for common code kernels identified across a range of DOE applications and test their support across all accessible OpenMP 4.5 implementations
- Identify and report inconsistencies or bugs in specific implementations to their respective compiler developers
- Present performance data for different directives across different OpenMP 4.5 implementations

OpenMP 4.5 Offloading

OpenMP 4.5 Machine model

OpenMP 4.5 Offloading Code Execution Model

OpenMP 4.5 Offloading Code Execution Model

OpenMP 4.5 Offloading Code Execution Model

OpenMP Offloading programming model

Methodology

Validation of OpenMP 4.5 offloading features

Validation of OpenMP 4.5 offloading features

1	int num_dev = omp_get_num_devices();	Get number of available devices			
2	int h_matrix [N*num_dev];				
3					
4	for (int dev = 0; dev < num_dev; ++dev) {				
5	<pre>#pragma omp target data map(from: h_matrix[dev*N:N]) device(dev)</pre>	Map data from selected device to nost			
6	{				
7	<pre>#pragma omp target map(from: h_matrix[dev*N:N]) device(dev)</pre>	Create target region on selected device			
8	{				
9	for (int i = 0; i < N; ++i)				
10	h_matrix[dev*N + i] = dev;	Computation offloaded to selected device			
11	} // end target				
12	<pre>} // end target data Checking data mapping and</pre>				
13	<pre>} // end for loop code offloading on multiple</pre>				
14	devices				
15	// checking results				
16	for (int dev = 0; dev < num_dev; ++dev) {				
17	for (int i = dev*N ; i < (dev+1)*N; ++i)				
18	OMPVV_TEST(errors, dev != h_matrix[i]));	Compare results with expected			
19	}				

Comparing runtime overhead

pseudocode

```
OMPVV_INIT_TEST;
for ( i = 0 ; i < NUM_REP ; i ++) {
    OMPVV_START_TIMER;
#pragma omp ... 
    OMPVV_TEST_LOAD; // if necessary
    OMPVV_STOP_TIMER;
    OMPVV_STOP_TIMER;
    OMPVV_REGISTER_TEST;
}
OMPVV PRINT RESULT;
```

target exit data map if true target exit data map from target exit data map device target exit data map depend target exit data map delete target enter data map to target enter data map if true target enter data map device target enter data map depend target enter data map alloc target data map tofrom target data if target data device target private target map tofrom target map to target map from target is device ptr target if target firstprivate target device target depend target defaultmap target

Experimental setup

System	Model	Processors	Cores/node	Threads/node	Memory	Accelerator	Complers
Titan	Cray XK7	AMD Opteron 6274	16	16	32 GB	1 NVIDIA K20X	CCE 8.7.2
Summitdev	IBM S822LC	2x Power8	20	160	256 GB	4 NVIDIA P100	GCC 7.1.1 Clang 3.8.0 XLC 13.1.6
Summit	IBM AC922	2x Power9	42	168	512 GB	6 NVIDIA V100	Clang 3.8.0 XLC 13.1.7
In-House	Generic	2x Intel Xeon E5- 2670	16	32	64 GB	1 NVIDIA K20X	Clang 7.0.0 GCC 8.1.0

Experimental setup Summit's Node

Results

***** new results since paper publication

Summary of compiler supported features

	Summitdev GCC gfortran Clang XLC XLF*					Summit Clang XLC		Titan CCE
OpenMP Feature	7.1.1	7.1.1*	3.8.0	13.1.6.	15.1.7	3.8.0	13.1.7	8.7.2
target	14/14	13/13	14/14	13/14	12/13	12/14	11/14	13/14
target data	5/6	4/4	6/6	6/6	2/4	6/6	6/6	3/6
target enter/exit data	6/7	-	6/7	6/7	-	6/7	6/7	5/7
target enter data	6/7	-	6/7	6/7	-	6/7	6/7	5/7
target update	5/5	-	5/5	4/5	-	5/5	4/5	4/5
target teams distribute	10/11	-	8/11	10/11	-	-	-	9/11
target teams distribute parallel for	13/14	-	11/14	11/14	-		-	10/14

P2S2 2018 - University of Oregon at Eugene, OR - Presented by: Jose Monsalve (josem@udel.edu)

*

Example of problematic features XL and defaultmap

Specifications (Section 2.15.5 - page 216):

4	• If a defaultmap(tofrom:scalar) clause is not present then a scalar variable is not
5	mapped, but instead has an implicit data-sharing attribute of firstprivate (see Section 2.15.1.1 on
6	page 179).

Test:

```
enum { VAL1 = 1, VAL2, VAL3, VAL4} scalar_enum = VAL1
#pragma omp target
    {
        scalar_enum = VAL4;
     }
OMPVV_TEST_AND_SET_VERBOSE(errors, scalar_enum != VAL1);
```

Failed condition

Target directive

Target directive

Target data directive

Target enter/exit data directive

Target enter/exit data directive

Target update directive

Target update directive

Conclusions

Conclusions

- We have shown how use of accelerators and heterogeneous systems are the current trend in HPC and most likely will continue to increase.
- As a result programming models are fastly adapting to these new architectural features.
- We have shown the importance of a proper methodology to assess support and status of current compiler implementations (GCC, Clang/LLVM, IBM XL and Cray CCE) and the latest DOE Systems.
- We have shown a possible methodology, and the results of applying it to the OpenMP 4.5 specifications, emphasizing offloading features identified in DOE applications.
- As the development continues, we have seen compiler developers fastly adapting and responding to bug reports. We appreciate their effort and responsiveness.

Visit our website https://crpl.cis.udel.edu/ompvvsollve/

OpenMP Validation & verification Q Search... × Project Publications

Repository

Documentation

Results

License

More

Bitbucket Repository

This project is part of

OPENMP VALIDATION AND VERIFICATION

This website contains all related to the OpenMP Validation and Verification suite developed as part of the Exascale Computing Project (ECP). In particular the Scaling OpenMP Via LLVM for Exascale Performance and Portability (SOLLVE) project.

This project is a collaboration of

COAK RIDGE

Contact information:

Jose Monsalve (josem@udel.edu) Swaroop Pophale (pophaless@ornl.gov) Kyle Friedline (utimatu@udel.edu) Oscar Hernandez (oscar@ornl.gov) Sunita Chandrasekaran (schandra@udel.edu)

Copyright

Gavel taken from(Chris Potter - Modifier: Ibrahim.ID): https://commons.wikimedia.org/wiki/File:3D_png_Judges_Gavel.png

Logos under CC0:

- https://pixabay.com/en/papers-stack-heap-documents-576385/
- <u>https://pixabay.com/en/gear-wheel-gearwheel-gear-cogs-310906/</u>
- https://pixabay.com/en/user-top-view-office-keyboard-154199/
- https://pixabay.com/en/brain-cognition-design-art-2029391/
- <u>https://pixabay.com/en/computer-workstation-server-monitor-158743/</u>
- <u>https://pixabay.com/en/cpu-processor-intel-amd-chip-152656/</u>
- https://pixabay.com/en/microprocessor-processor-cpu-chip-152599/
- <u>https://pixabay.com/en/computer-cyber-circuitry-circuits-3163436/</u>
- https://pixabay.com/en/ram-computer-memory-module-148579/
- •

Back up slides

Top 500: Average number of cores per socket

Top 500: Number of systems with accelerators

Top 500: Number of systems with accelerators

47

Validation of OpenMP 4.5 offloading features

Design and write tests for OpenMP 4.5 Offloading features:

- 1. Study the specifications
- 2. Formulate testing methodology
- 3. Write initial test implementation
- 4. Discuss tests with team
- 5. Make corrections, report bugs or request clarifications
- 6. Run and report test result on multiple compilers available to us
 - a. Main focus on DOE Systems